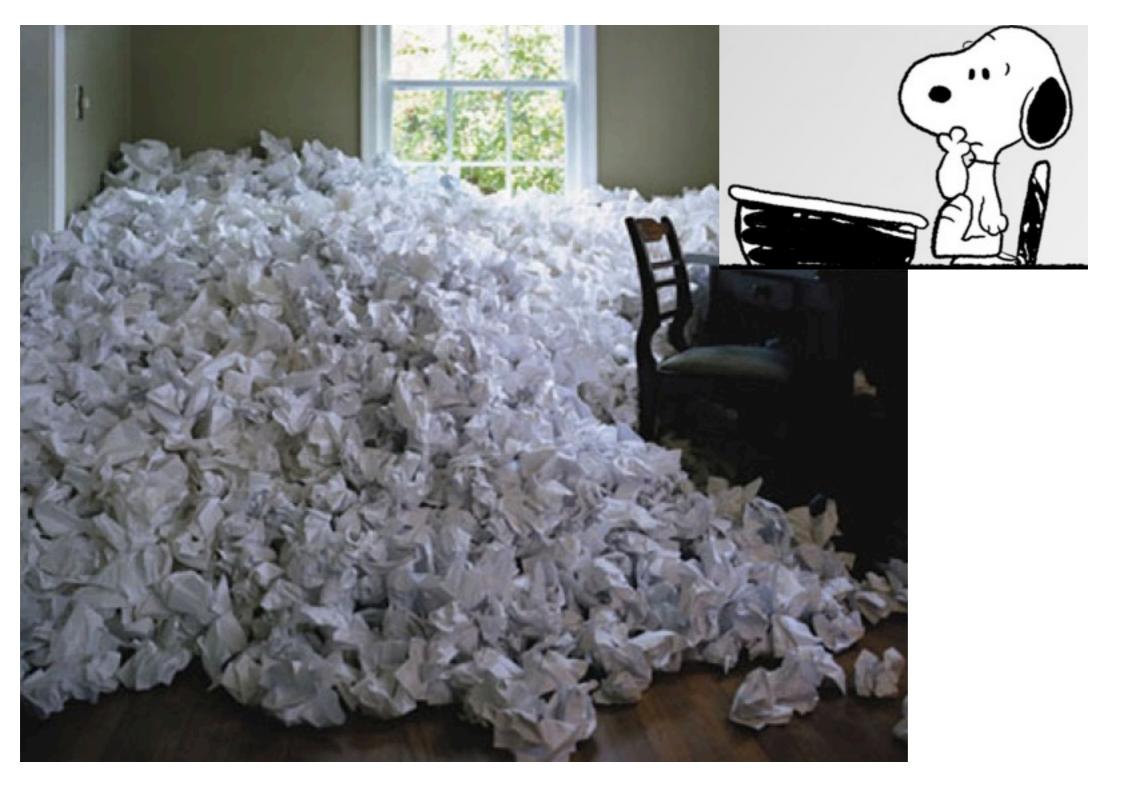


48h ago: talk checklist

- technical draft: ready
- cover page and thanks page: done
- some provocative bold claims: inserted
- some controversial arguments: present
- limitation of other approaches: discussed
- roadmap and useless-but-fancy animation: added
- a good story to start with? panic!
- any kind of start? null! niente! nada! no idea! http error 404!

Writer's block alert

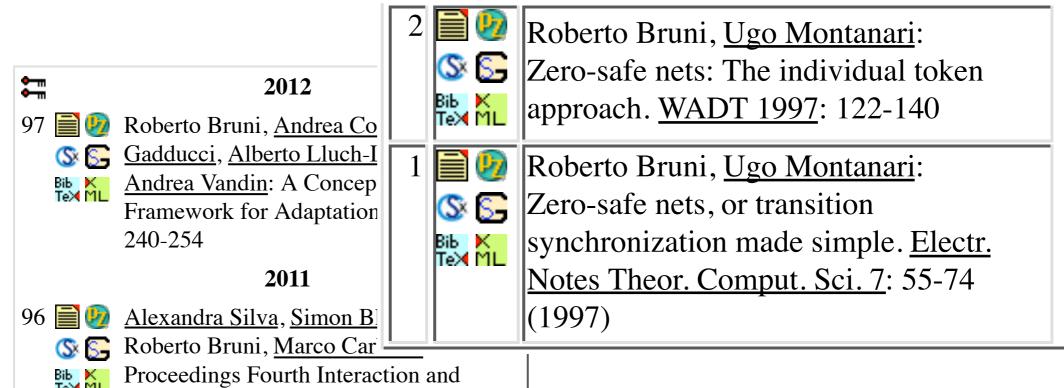


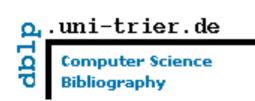
giovedì 7 giugno 2012

List of publications from the <u>DBLP Bibliography Server</u> - <u>FAQ</u> <u>Facets and more with CompleteSearch</u>

Concurrency Experience ICE 2011

author:roberto_bruni:





List of publications from the <u>DBLP Bibliography Server</u> - <u>FAQ</u> <u>Facets and more with CompleteSearch</u>

(Sx

author:roberto_bruni:

June 1997 2012

Roberto Bruni, Andrea Co S Gadducci, Alberto Lluch-I Andrea Vandin: A Concep Framework for Adaptation Sept. 2011 Alexandra Silva, Simon Bl 😘 🫜 Roberto Bruni, Marco Car

Roberto Bruni, <u>Ugo Montanari</u>:

Zero-safe nets: The individual token approach. <u>WADT 1997</u>: 122-140

Roberto Bruni, <u>Ugo Montanari</u>:

Zero-safe nets, or transition synchronization made simple. Electr. Notes Theor. Comput. Sci. 7: 55-74

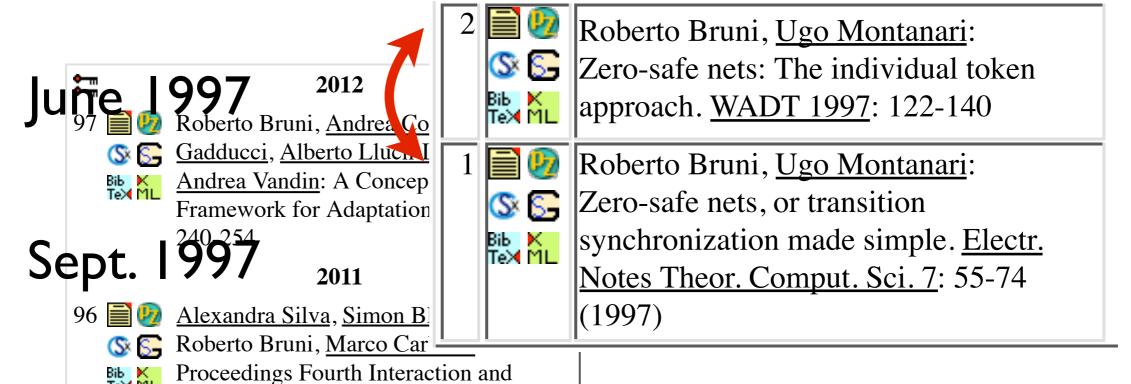
(1997)

Proceedings Fourth Interaction and Concurrency Experience ICE 2011

List of publications from the <u>DBLP Bibliography Server</u> - <u>FAQ</u> <u>Facets and more with CompleteSearch</u>

order of presentation # order of publication

Concurrency Experience ICE 2011



giovedì 7 giugno 2012

15 years ago... from yesterday

12th WADT Workshop on Algebraic Development Techniques

Tuesday, June 3 - Saturday, June 7 Tarquinia - Italy

Preliminary Program

Organized by the

Dipartimento di Scienze dell'Informazione Universitá degli Studi di Roma La Sapienza

Friday June 6

Chair Ehrig H.

9.00-10.00 Invited Talk: Montanari U.

The Tile Model and its relation with Rewriting Logic

10.00-10.25 Bruni R.

Introduction to zero safe nets

10.25-11.00 Coffee Break

Really glad to be here, now! Thanks for the opportunity

Let's begin (but feel free to interrupt)

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

Setting

Modelling concurrent communicating systems

Process calculi approach

(some basic knowledge of CCS and pi assumed, some details omitted)

Interaction

An interaction is an action by which (communicating) processes can influence each other

Milner's CCS interaction

 $action\ prefix \ (input?)$

co-action prefix (output?) $\overline{a}.$

Milner's CCS interaction

 $action\ prefix \ (input?)$

co-action prefix (output?) $\overline{a}.$

 $a \bullet \overline{a} = \tau$ silent action

Milner's CCS interaction

 $action\ prefix \ (input?)$

co-action prefix (output?) $\overline{a}.Q$

 $a \bullet \overline{a} = \tau$ silent action

PQ

Milner's pi interaction

$$\overline{a}x.P \mid a(y).Q$$

$$\mid \tau$$

$$P \mid Q[x/y]$$

Any better abstraction?

Internet
Biology
Social networks
Autonomic systems

• • •

I/O is the basic form of interaction but "one size cannot fit all"

(it is possibly misleading to think so: not all interactions are mutual/reciprocal)

Would you...?

...model piano playing using dyadic interaction

Open multiparty interactions are like playing piano (either bad or good, it does not matter)

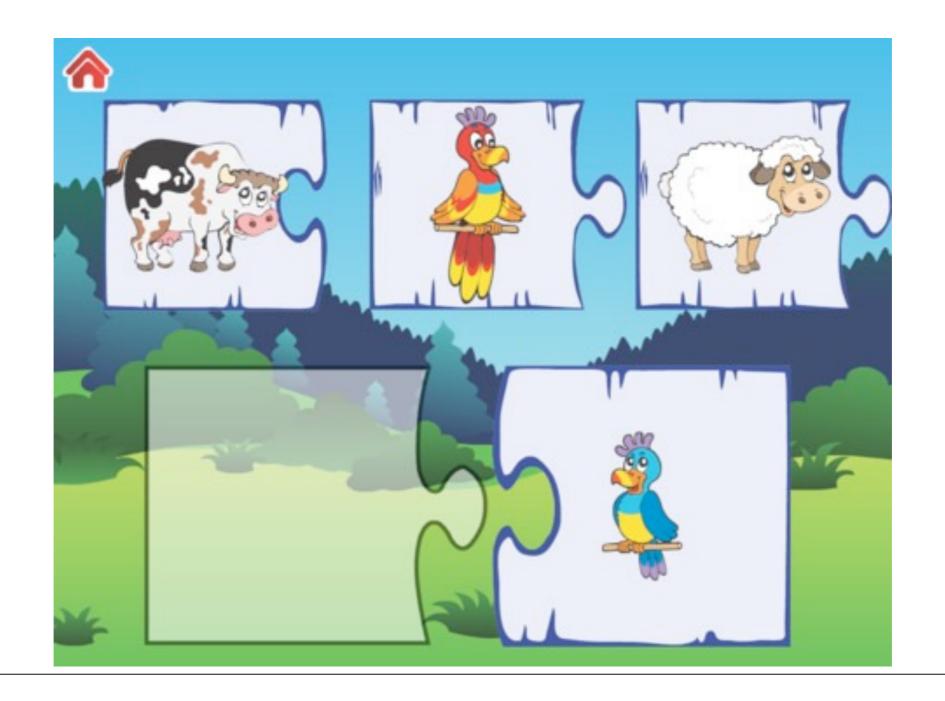
Driving vision of this talk

Interaction is like a puzzle:

it requires different pieces to fit together

Bold claim #1

Mutual (I/O-like) interaction is like a kid's puzzle

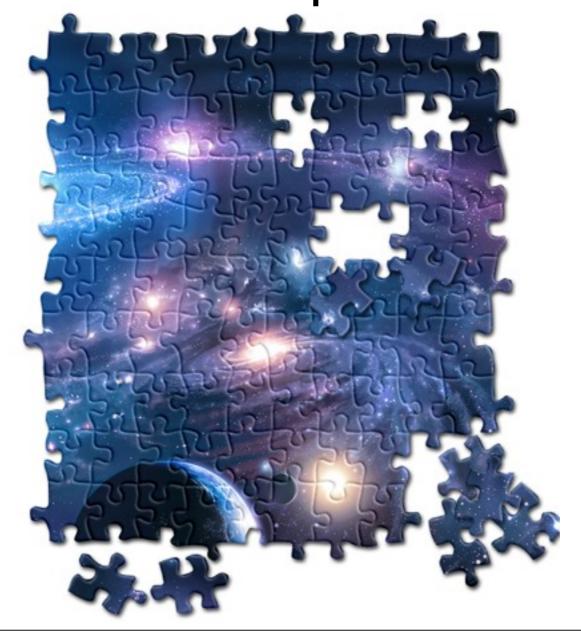


Multiparty interaction

An interaction is multiparty when it involves two or more processes

Open interaction

An interaction is open when the number of involved processes is not fixed



Our aim

Extend the theory of dyadic interactions as little as possible as well as possible to deal with open multiparty interaction

Motivating example

How to encode Cardelli&Gordon's mobile ambients (in ordinary process calculi)?

CCS/CSP: immutable connectivity

pi: channel mobility

HOpi: flat process mobility

mobile ambients:
mobility of nested processes
(barrier crossing)

Process algebra ops

```
egin{array}{ccccc} \mathbf{0} & \mathrm{nil} \\ \mu.P & \mathrm{action\ prefix} \\ P+Q & \mathrm{sum} \\ P \mid Q & \mathrm{parallel} \\ (
u a)P & \mathrm{restriction} \\ !P & \mathrm{replication} \end{array}
```

X process variable rec X.P recursive process

 $P[\phi]$ renaming

Named, mobile, active, hierarchical ambients

An ambient is a place where computation happens An ambient defines some sort of boundary

An ambient has a name

An ambient has a collection of local processes

An ambient has a collection of sub-ambients

Ambients are subject to capabilities:

Ambients can move in/out of other ambients

Ambients can dissolve

(Pure) Ambient calculus

```
P :=
                  nil
          m[P]
                ambient
           M.P exercise a capability
          P \mid Q parallel
                                      m
         (\nu a)P restriction
                 replication
M ::=
                 entry capability
           in m
         out m exit capability
        open m open capability
```

(Pure) Ambient calculus

```
P :=
                 nil
                ambient
               exercise a capability
             Q parallel
        (\nu a)P restriction
               replication
                 entry capability
        out m exit capability
       open m open capability
```

Ambient calculus: semantics

Structural congruence

$$P \equiv P$$

$$Q \equiv P \Rightarrow P \equiv Q$$

$$P \mid Q \equiv Q \mid P$$

$$(vn)\mathbf{0} \equiv \mathbf{0}$$

$$(vn)(vm)P \equiv (vm)(vn)P$$

$$(vn)(P \mid Q) \equiv P \mid (vn)Q, \text{ if } n \notin fn(P)$$

$$!P \equiv P \mid !P$$

$$P \equiv Q \Rightarrow P \equiv R$$

$$(P \mid Q) \mid R \equiv P \mid (Q \mid R)$$

$$P \equiv Q \Rightarrow P \mid R \equiv Q \mid R$$

$$P \equiv Q \Rightarrow (vn)P \equiv (vn)Q$$

$$P \equiv Q \Rightarrow (vn)P \equiv (vn)Q$$

$$P \equiv Q \Rightarrow (vn)P \equiv (vn)Q$$

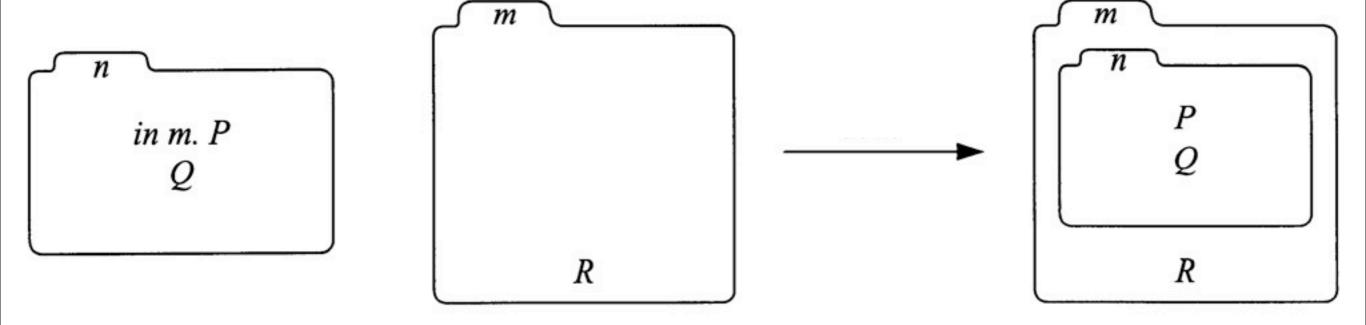
Reduction semantics

$$\frac{n[\operatorname{in} m.P \mid Q] \mid m[R] \to m[n[P \mid Q] \mid R]}{\operatorname{open} n.P \mid n[Q] \to P \mid Q} \underbrace{\frac{P \to Q}{(vn)P \to (vn)Q}}_{\text{(Par)}} (\operatorname{Res}) \underbrace{\frac{P \to Q}{n[P] \to n[Q]}}_{\text{(Cong)}} (\operatorname{Amb})$$

$$\frac{P \to Q}{P \mid R \to Q \mid R} (\operatorname{Par}) \underbrace{\frac{P' \equiv P}{P \to Q}}_{P' \to Q'} Q \equiv Q' (\operatorname{Cong})$$

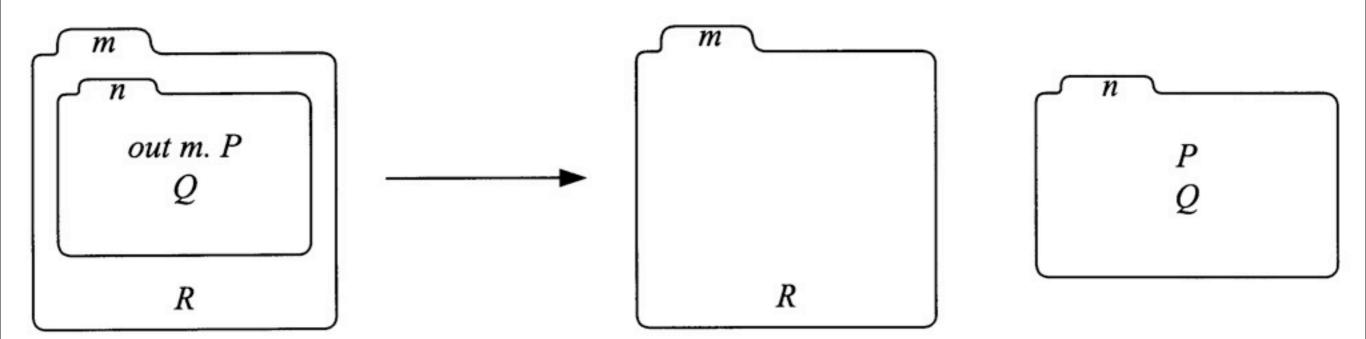
(In)

$$n[\operatorname{in} m.P \mid Q] \mid m[R] \rightarrow m[n[P \mid Q] \mid R]$$



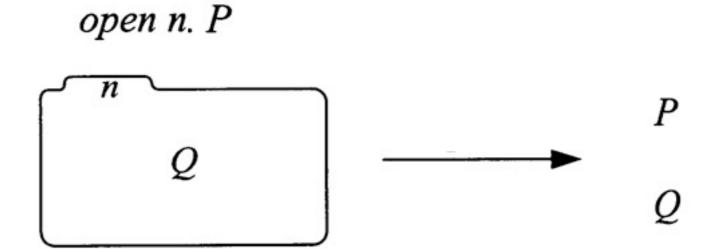
(Out)

$$m[n[\operatorname{out} m.P | Q] | R] \rightarrow n[P | Q] | m[R]$$



(Open)

$$\operatorname{open} n.P \mid n[Q] \longrightarrow P \mid Q$$



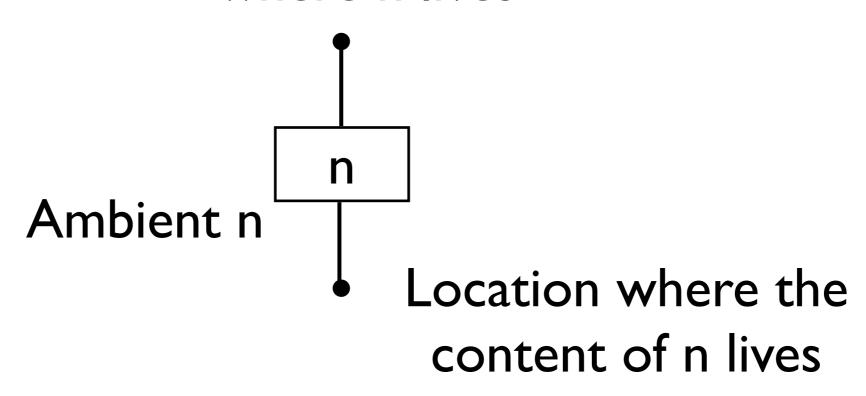
A challenge for the audience

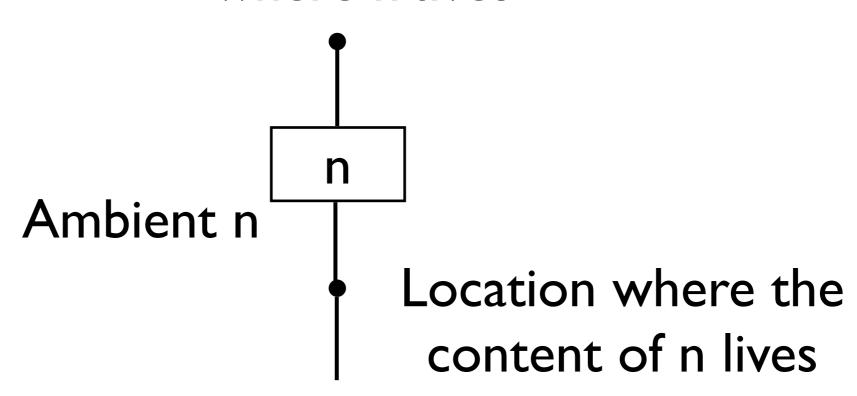
Why is it difficult to encode ambients into pi? (How would you proceed?)

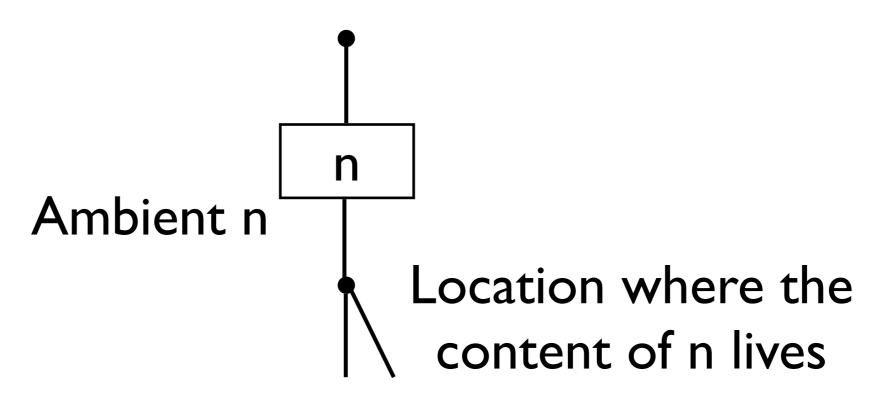
A challenge for the audience

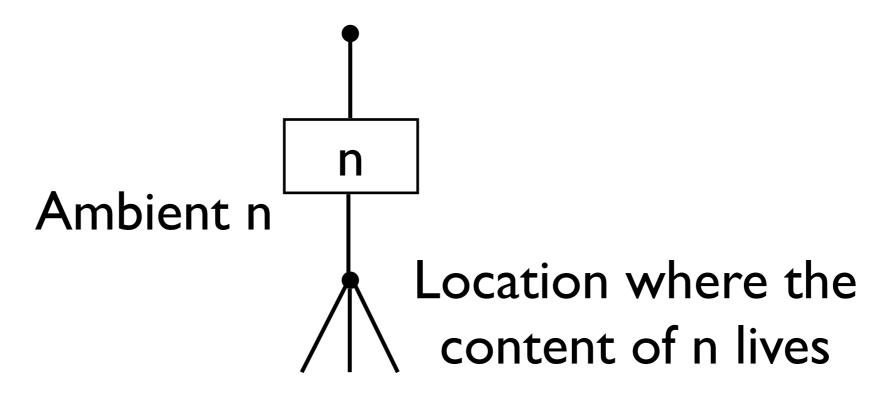
Why is it difficult to encode ambients into pi? (How would you proceed?)

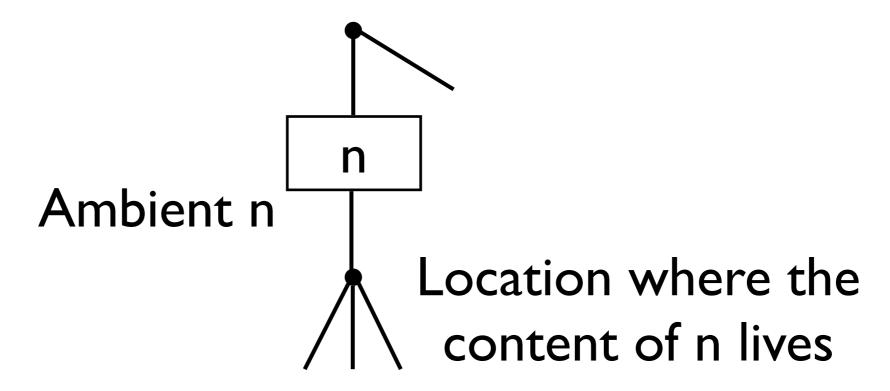
Personal guess: it is just because ambient-like interaction is inherently non-dyadic!

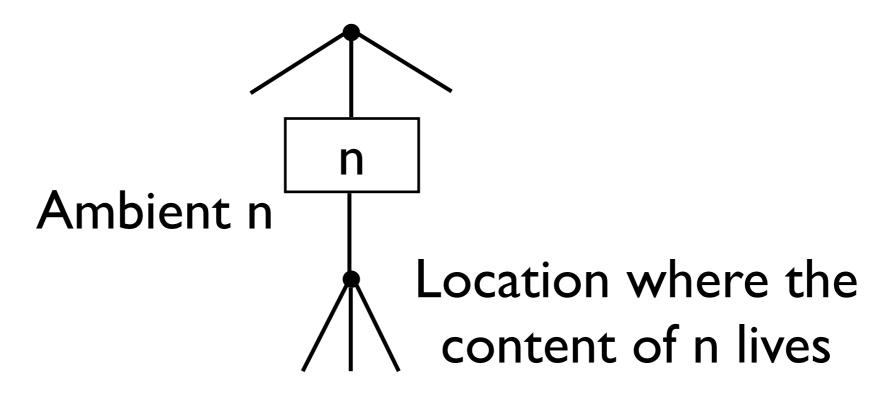


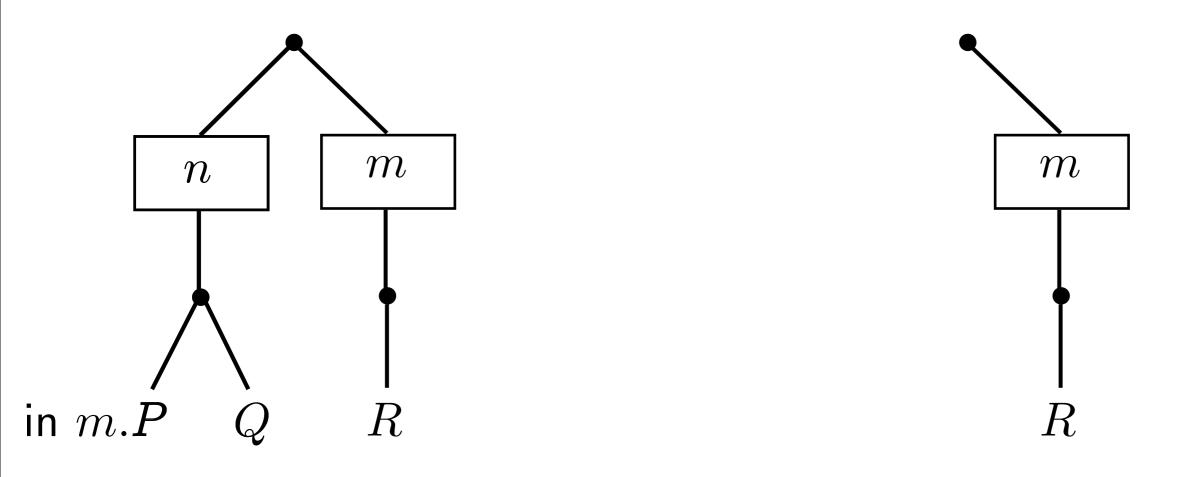


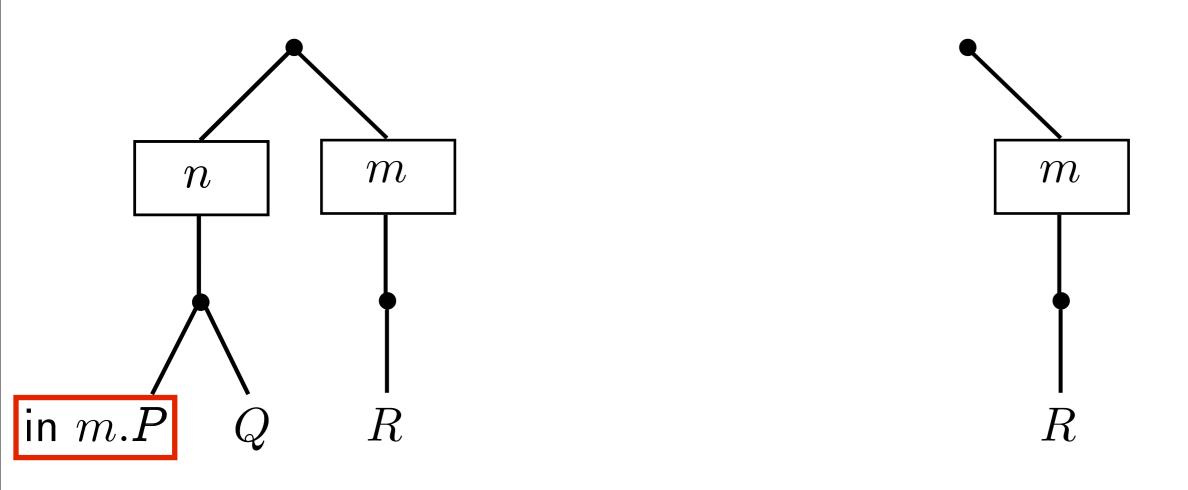




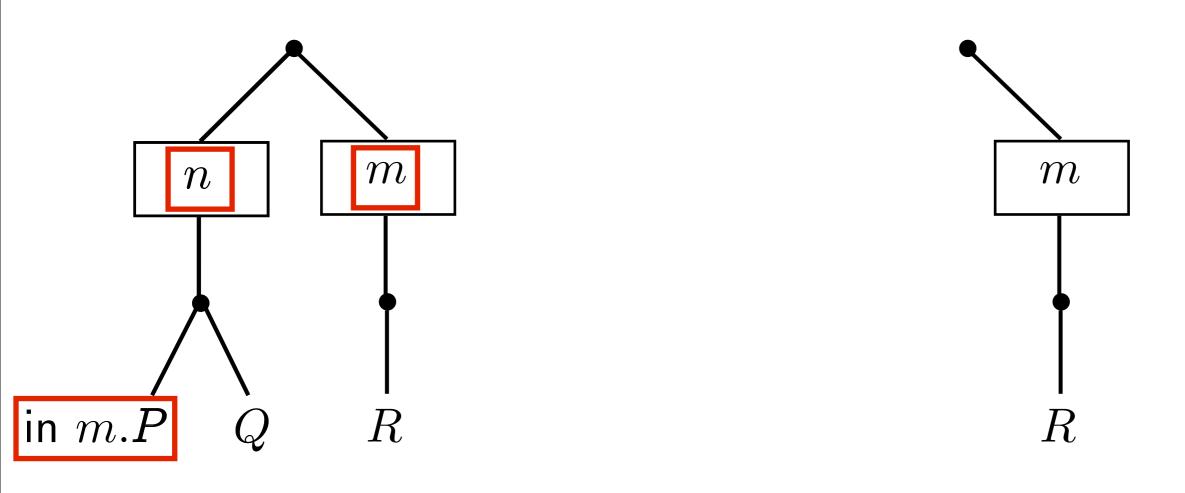


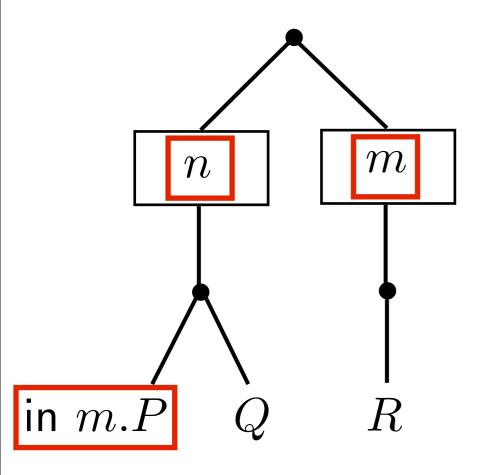


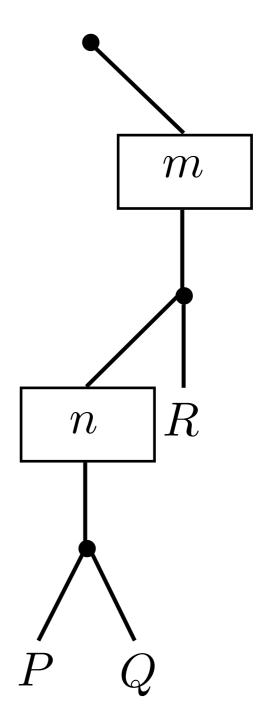


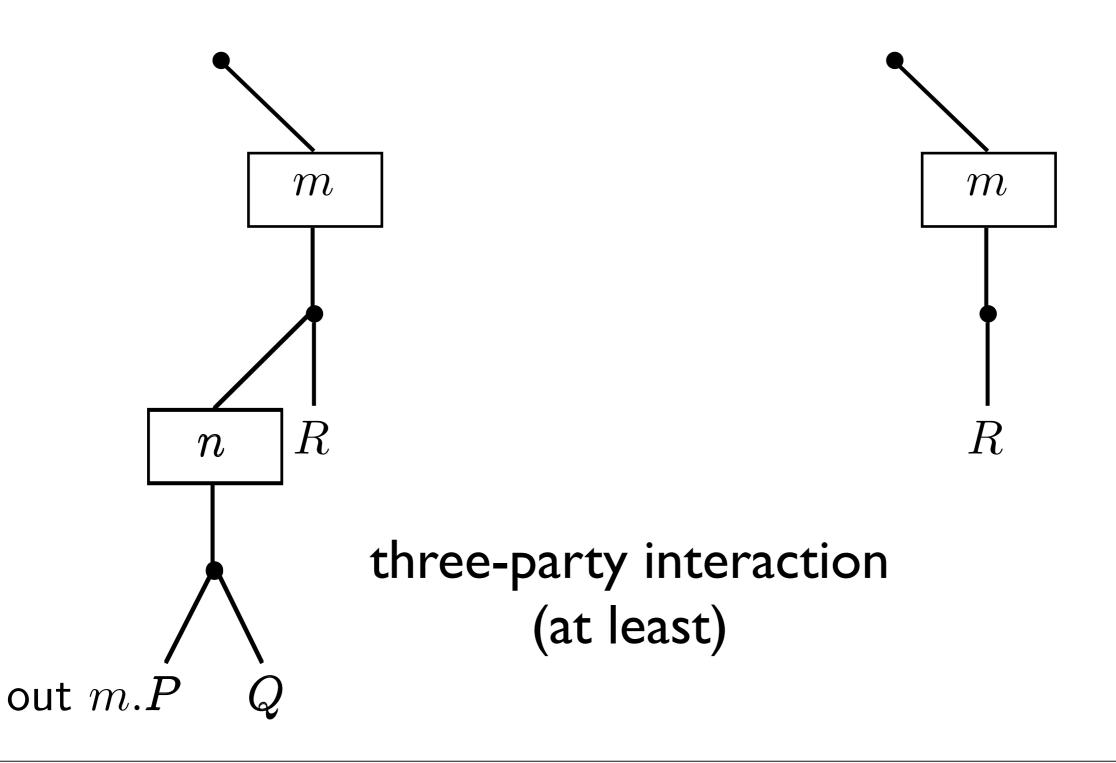


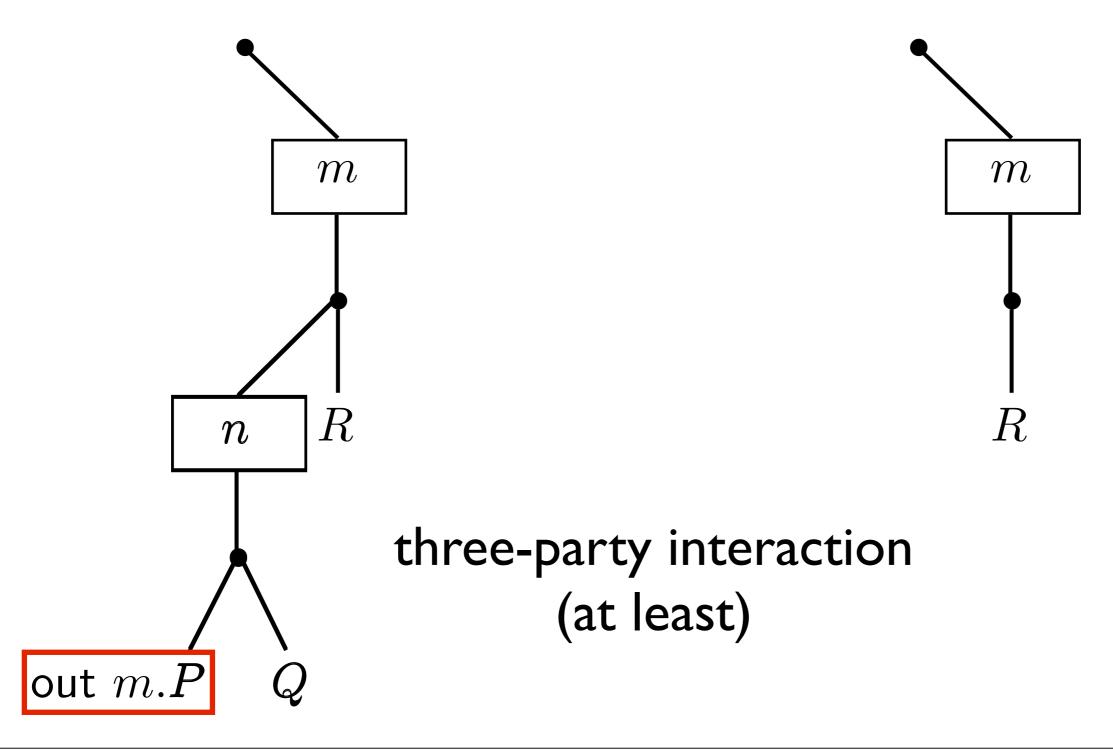


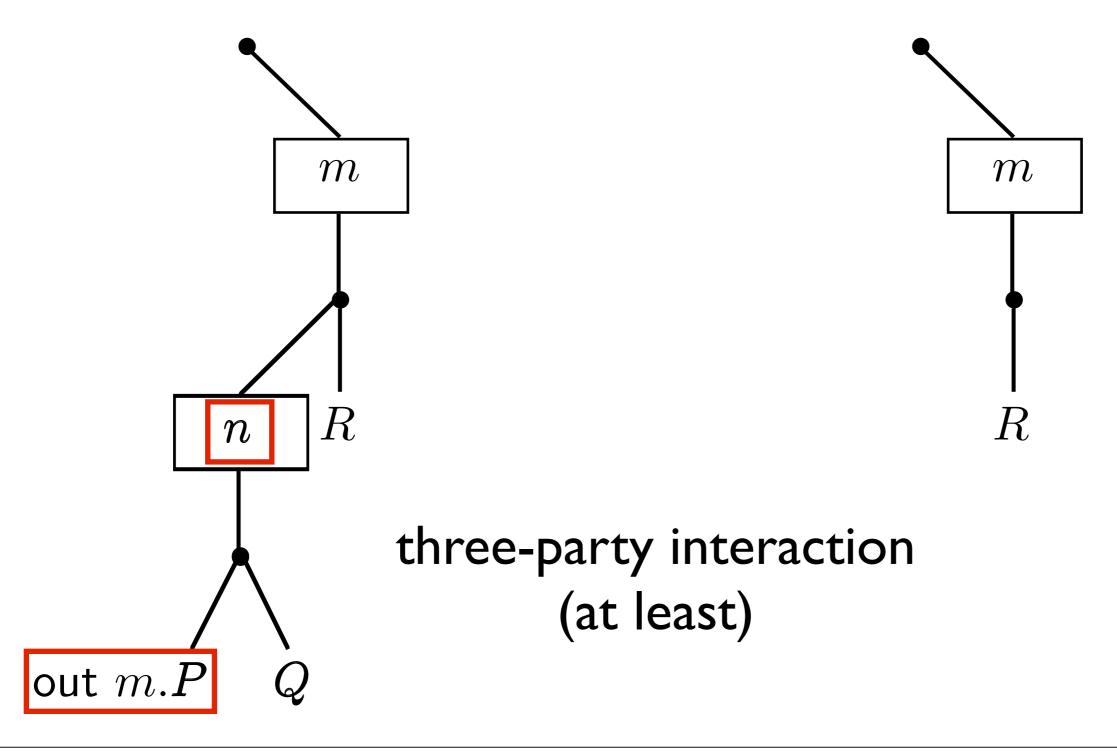


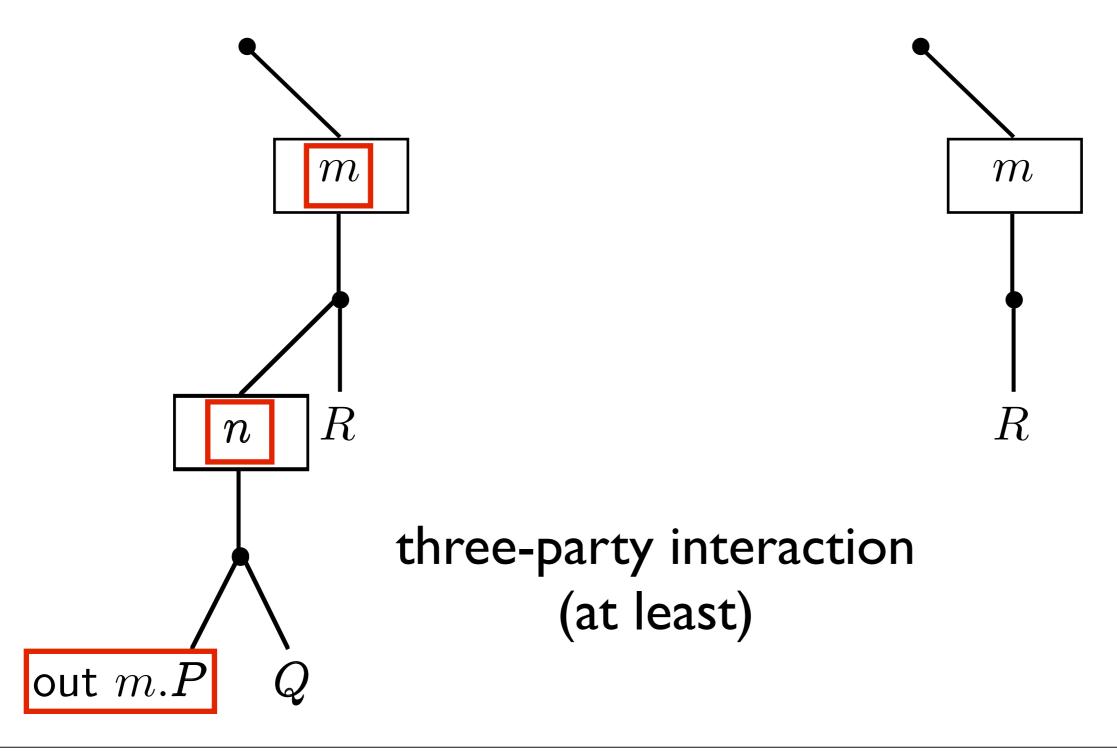


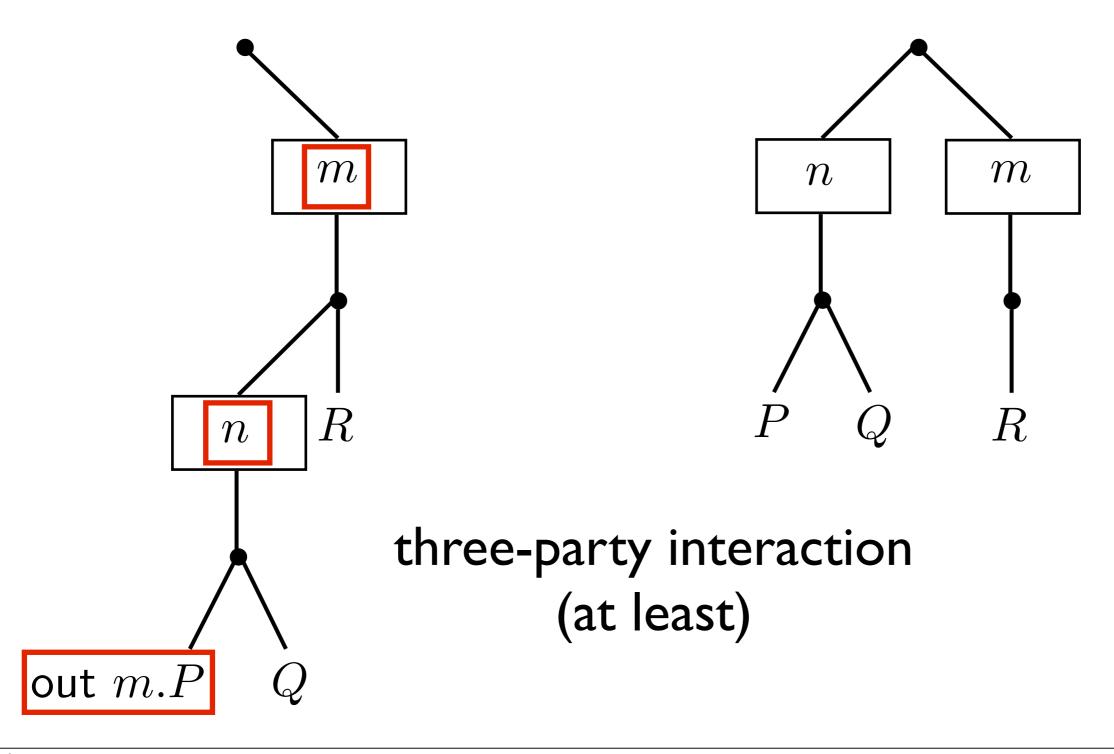




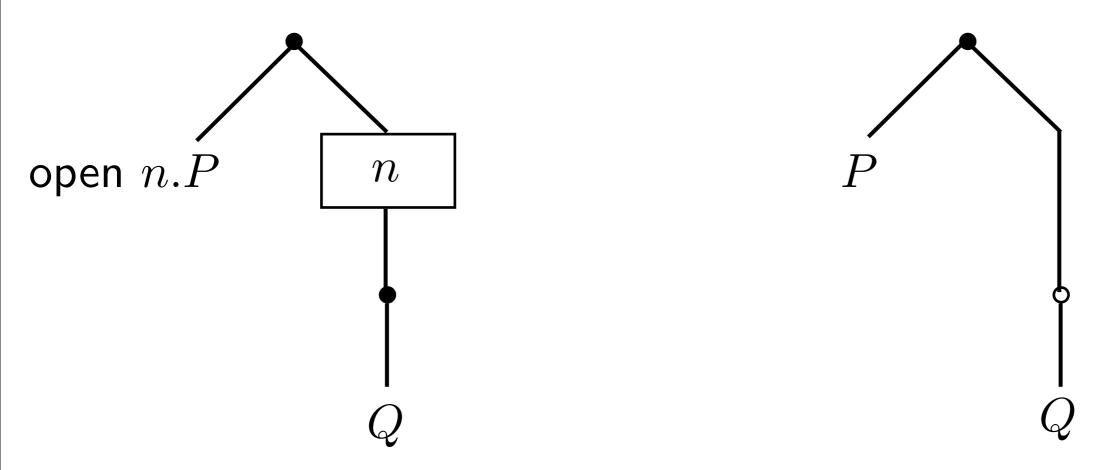






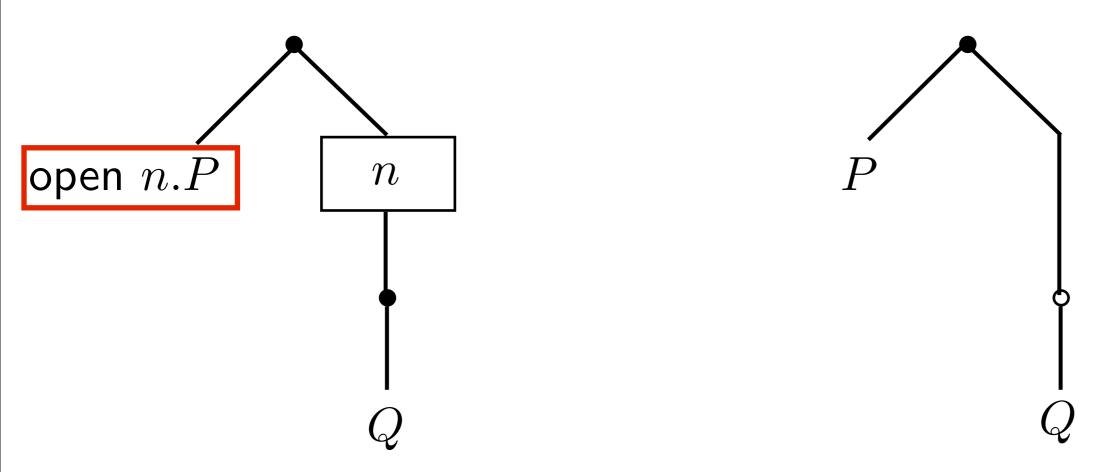


(Open), again



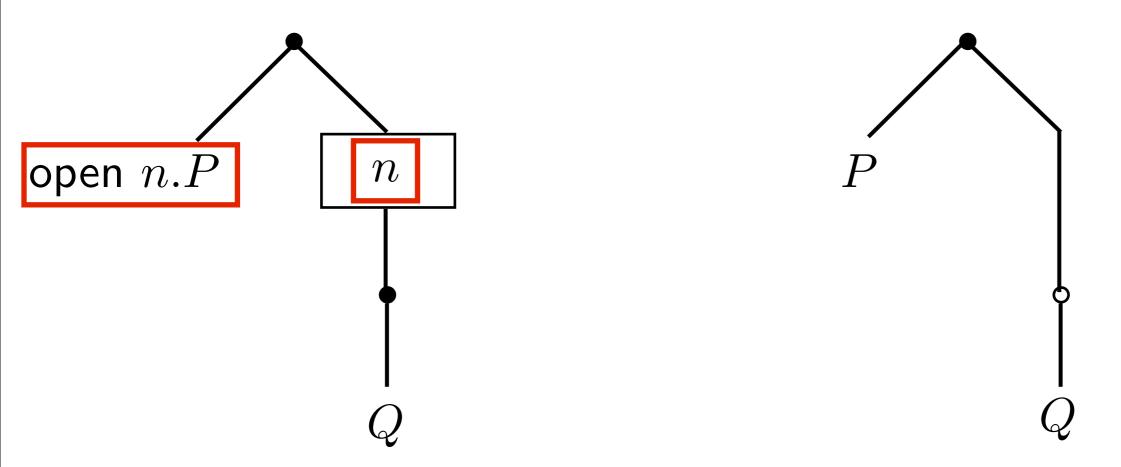
looks like a two-party interaction, but it is not! It is open! (accident of fate): many processes (Q) change location at once

(Open), again



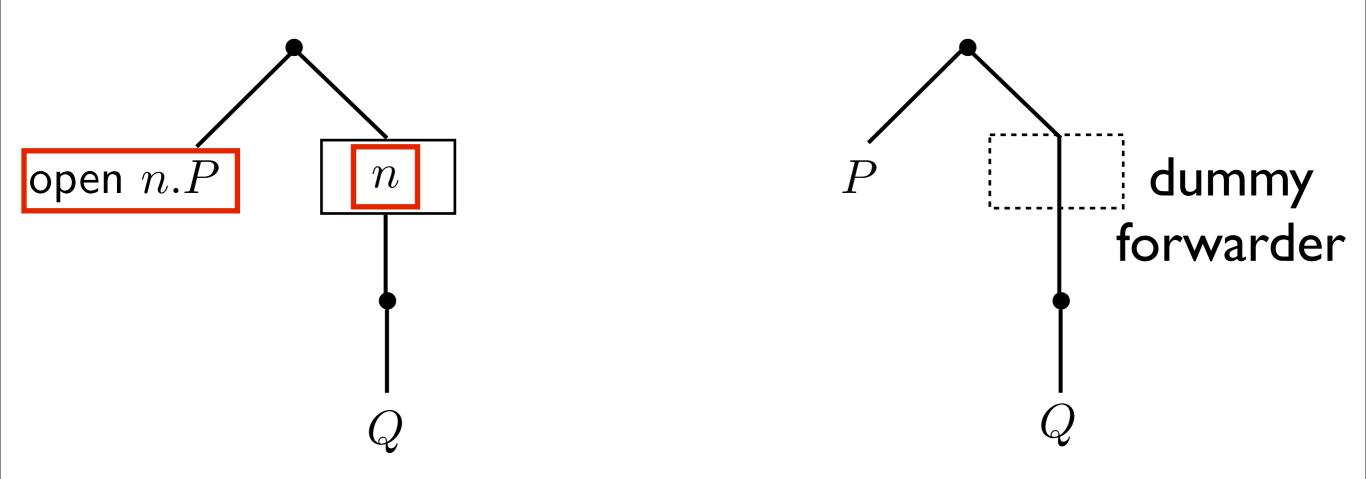
looks like a two-party interaction, but it is not! It is open! (accident of fate): many processes (Q) change location at once

(Open), again



looks like a two-party interaction, but it is not! It is open! (accident of fate): many processes (Q) change location at once

(Open), yet another



ok, now it is a two-party interaction

But (In) and (Out) become open!

they must involve as many fwd-ers as needed

Some consequences

Proposed encoding are either quite involved or centralized (unnecessary bottle-necks)

LTS semantics for ambients are ad-hoc (to say the least) and based on HO labels

Some references

- Fabio Gadducci, Giacoma Valentina Monreale: A decentralised graphical implementation of mobile ambients. J. Log. Algebr. Program. 80(2): 113-136 (2011)
- Linda Brodo: On the Expressiveness of the pi-Calculus and the Mobile Ambients. AMAST 2010: 44-59
- Gabriel Ciobanu, Vladimir A. Zakharov: Encoding Mobile Ambients into the pi -Calculus. Ershov Memorial Conference 2006: 148-165
- Linda Brodo, Pierpaolo Degano, Corrado Priami: Reflecting Mobile
 Ambients into the p-Calculus. Global Computing 2003: 25-56
- Cédric Fournet, Jean-Jacques Lévy, Alan Schmitt: An Asynchronous, Distributed Implementation of Mobile Ambients. IFIP TCS 2000: 348-364

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

(Recall our aim)

Extend the theory of dyadic interactions as little as possible as well as possible to deal with open multiparty interaction

and to encode mobile ambients

Guidelines

Keep the syntax simple Do not move the complexity to SOS rules

All we need is just a proper synchronization algebra

Linked interaction

We regard an interaction as a chain of links (still a kid's puzzle after all)

Process algebra ops

```
\begin{array}{ccc} \mathbf{0} & \text{nil} \\ \hline \mu.P & \text{action prefix} \\ P+Q & \text{sum} & \text{We take as action} \\ P \mid Q & \text{parallel} & \text{the offering of a link} \\ (\nu a)P & \text{restriction} \\ !P & \text{replication} \end{array}
```

X process variable rec X.P recursive process

 $P[\phi]$ renaming

Notation

lpha interaction over a

 \mathcal{T} silent interaction

* any interaction (only in labels)

Link

$$\alpha \setminus \beta$$
 From α to β

Valid:

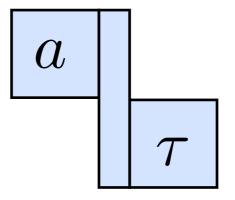
$$\alpha = \beta = * \text{ or } \alpha, \beta \neq *$$

$$oxed{\beta}$$

Virtual if
$$*$$
*

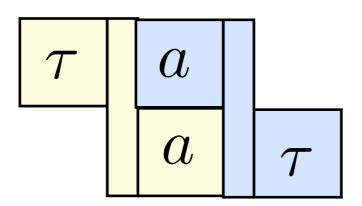
Solid (otherwise)

Examples: CCS-like

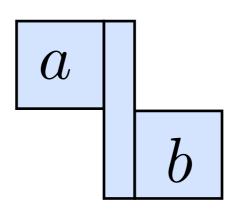


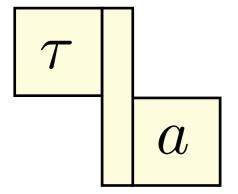


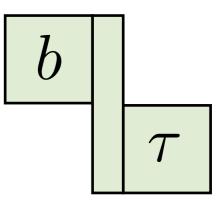
Examples: CCS-like



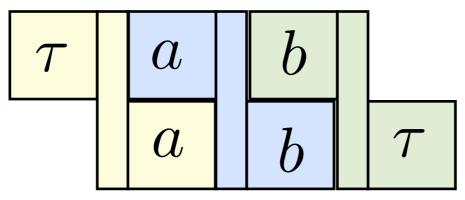
Examples: three party



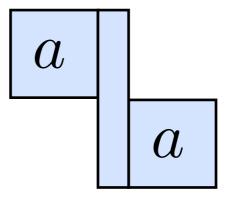


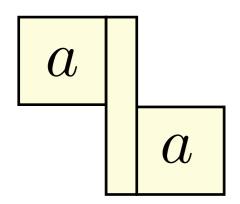


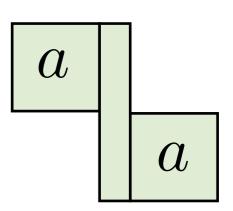
Examples: three party



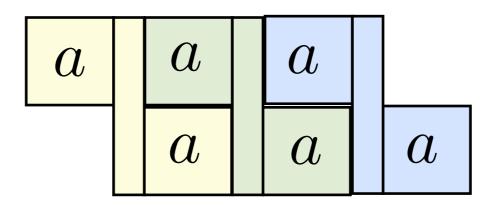
Examples: CSP







Examples: CSP



Link chain

$$\alpha_1 \setminus \beta_1 \quad \alpha_2 \setminus \beta_2 \quad \cdots \quad \alpha_n \setminus \beta_n$$

such that:

$$\beta_i, \alpha_{i+1} \notin \{\tau, *\} \text{ implies } \beta_i = \alpha_{i+1}$$

$$\beta_i = \tau \text{ iff } \alpha_{i+1} = \tau$$

$$\forall i.\alpha_i, \beta_i \in \{\tau, *\} \text{ implies } \forall i.\alpha_i = \beta_i = \tau$$

Link chain: terminology

$$\alpha_1 \setminus \beta_1 \quad \alpha_2 \setminus \beta_2 \quad \cdots \quad \alpha_n \setminus \beta_n$$

Solid:

if all its links are so

Simple:

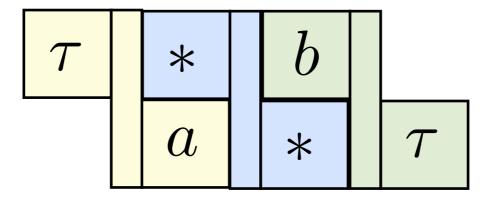
if it contains exactly one solid link

$$\ell \in s$$
:

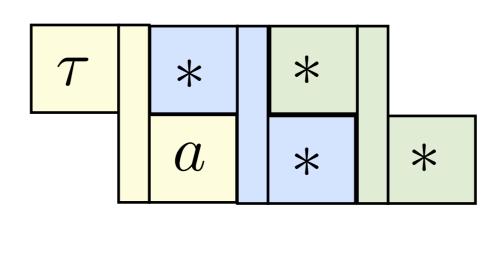
s is simple and ℓ is the only solid link in s

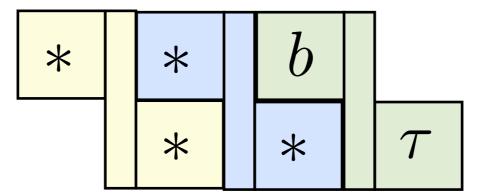
Examples: non solid

Virtual links $^*\backslash_*$ can be read as missing pieces of the puzzle

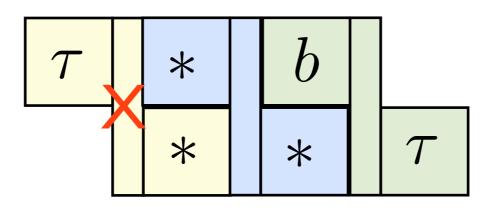


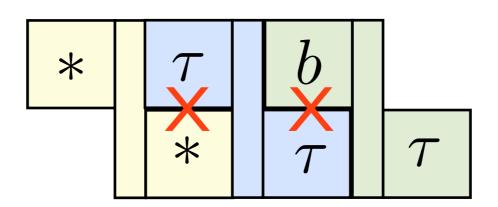
Examples: simple





Counter-examples





Merge

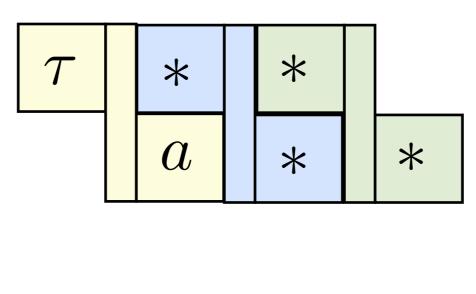
(All the ops we show are strict)

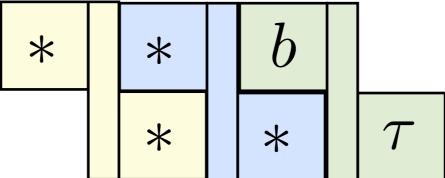
$$\alpha \bullet \beta \triangleq \begin{cases} \alpha & \text{if } \beta = * \\ \beta & \text{if } \alpha = * \\ \bot & \text{otherwise} \end{cases}$$

$$\alpha_{\beta} \bullet \alpha'_{\beta'} \triangleq \begin{cases} (\alpha \bullet \alpha')_{(\beta \bullet \beta')} & \text{if } \alpha \bullet \alpha', \beta \bullet \beta' \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

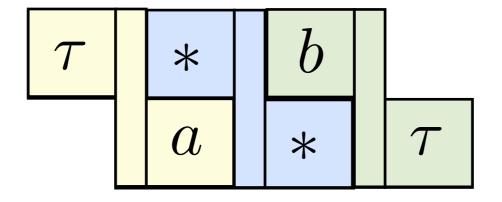
The definition extends to chains element-wise (the result is undefined if the outcome is not valid)

Examples: merge





Examples: merge



Restriction

$$(va)(\beta^{\alpha}) \triangleq \begin{cases} \beta^{\alpha} & \text{if } \alpha, \beta \neq a \\ \tau^{\tau} & \text{if } \alpha = \beta = a \\ \bot & \text{otherwise} \end{cases}$$

$$(\nu a)(^{\alpha_1} \setminus_{\beta_1} ^{\alpha_2} \setminus_{\beta_2} ... ^{\alpha_n} \setminus_{\beta_n}) \triangleq$$

$$\begin{cases} \alpha_1 \setminus (\nu a)(\beta_1^{\alpha_2}) \setminus ... \setminus (\nu a)(\beta_{n-1}^{\alpha_n}) \setminus_{\beta_n} & \text{if } \alpha_1, \beta_n \neq a \\ \bot & \end{cases}$$

Examples: restriction

$$(\nu a) \quad \boxed{\begin{matrix} \tau \\ a \end{matrix} \quad * \quad \tau \end{matrix}} = \bot$$

(Relevant) SOS rules

(solid) (simple)
$$\frac{\ell \in S}{\ell \cdot P \xrightarrow{S} P} \text{(Act)}$$

$$\frac{P \xrightarrow{S} P'}{(va)P \xrightarrow{(va)s} (va)P'}$$
 (Res)

$$\frac{P \xrightarrow{S} P'}{P|Q \xrightarrow{S} P'|Q} \text{(Lpar)}$$

$$\frac{P \xrightarrow{S} P' \qquad Q \xrightarrow{S'} Q'}{P|Q \xrightarrow{S \bullet S'} P'|Q'} \text{(Com)}$$

(look as ordinary CCS rules)

$$(\nu a)({}^{\tau}\backslash_a.P \mid {}^{a}\backslash_b.Q \mid {}^{b}\backslash_{\tau}.R)$$

$$(\nu a)({}^{\tau}\backslash_a.P \mid {}^{a}\backslash_b.Q \mid {}^{b}\backslash_{\tau}.R)$$

$$^{\tau}\backslash_{a}.P \xrightarrow{\tau\backslash_{a}^{*}\backslash_{*}^{*}} P$$

$$(\nu a)(^{\tau}\backslash_a.P\mid ^a\backslash_b.Q\mid ^b\backslash_{\tau}.R)$$

$${}^{\tau}\backslash_{a}.P \xrightarrow{{}^{\tau}\backslash_{a}^{*}\backslash_{*}^{*}} P \qquad {}^{a}\backslash_{b}.Q \xrightarrow{{}^{*}\backslash_{a}^{*}\backslash_{b}^{*}} Q$$

$$(\nu a)(^{\tau}\backslash_a.P\mid ^a\backslash_b.Q\mid ^b\backslash_{\tau}.R)$$

$${}^{\tau}\backslash_{a}.P \xrightarrow{{}^{\tau}\backslash_{a}^{*}\backslash_{*}^{*}} P \qquad {}^{a}\backslash_{b}.Q \xrightarrow{{}^{*}\backslash_{a}^{*}\backslash_{b}^{*}} Q$$

$$^{\tau}\backslash_{a}.P\mid {}^{a}\backslash_{b}.Q \xrightarrow{\tau\backslash_{a}\backslash_{b}^{*}\backslash_{*}} P\mid Q$$

$$(\nu a)(^{\tau}\backslash_a.P\mid ^a\backslash_b.Q\mid ^b\backslash_{\tau}.R)$$

$${}^{\tau}\backslash_{a}.P \xrightarrow{{}^{\tau}\backslash_{a}^{*}\backslash_{*}^{*}} P \qquad {}^{a}\backslash_{b}.Q \xrightarrow{{}^{*}\backslash_{a}^{*}\backslash_{b}^{*}} Q$$

$${}^{\tau}\backslash_{a}.P \mid {}^{a}\backslash_{b}.Q \xrightarrow{{}^{\tau}\backslash_{a}\backslash_{b}^{*}\backslash_{*}} P \mid Q \qquad {}^{b}\backslash_{\tau}.R \xrightarrow{{}^{*}\backslash_{*}\backslash_{*}\backslash_{\tau}} R$$

$$(\nu a)(^{\tau}\backslash_a.P\mid ^a\backslash_b.Q\mid ^b\backslash_{\tau}.R)$$

$${}^{\tau}\backslash_{a}.P \xrightarrow{{}^{\tau}\backslash_{a}^{*}\backslash_{*}^{*}} P \qquad {}^{a}\backslash_{b}.Q \xrightarrow{{}^{*}\backslash_{a}^{*}\backslash_{b}^{*}} Q$$

$$^{\tau}\backslash_{a}.P\mid^{a}\backslash_{b}.Q$$
 $\xrightarrow{\tau\backslash_{a}\backslash_{b}^{*}\backslash_{*}}$ $P\mid Q$ $^{b}\backslash_{\tau}.R$ $\xrightarrow{*\backslash_{*}\backslash_{*}\backslash_{\tau}}$ R

$$^{\tau}\backslash_{a}.P\mid {}^{a}\backslash_{b}.Q\mid {}^{b}\backslash_{\tau}.R \xrightarrow{\tau\backslash_{a}\backslash_{b}\backslash_{\tau}} P\mid Q\mid R$$

$$(\nu a)(^{\tau}\backslash_a.P\mid ^a\backslash_b.Q\mid ^b\backslash_{\tau}.R)$$

$${}^{\tau}\backslash_{a}.P \xrightarrow{{}^{\tau}\backslash_{a}^{*}\backslash_{*}^{*}} P \qquad {}^{a}\backslash_{b}.Q \xrightarrow{{}^{*}\backslash_{a}^{*}\backslash_{b}^{*}} Q$$

$$^{\tau}\backslash_{a}.P\mid {}^{a}\backslash_{b}.Q \xrightarrow{\tau\backslash_{a}\backslash_{b}^{*}\backslash_{*}} P\mid Q \qquad {}^{b}\backslash_{\tau}.R \xrightarrow{*\backslash_{*}\backslash_{*}\backslash_{\tau}} R$$

$$b \setminus_{\tau} . R \xrightarrow{* \setminus_{*} \setminus_{\sigma} \setminus_{\tau}} R$$

$$^{\tau}\backslash_{a}.P\mid {}^{a}\backslash_{b}.Q\mid {}^{b}\backslash_{\tau}.R \xrightarrow{\tau\backslash_{a}\backslash_{b}\backslash_{\tau}} P\mid Q\mid R$$

$$(\nu a)({}^{\tau}\backslash_{a}.P \mid {}^{a}\backslash_{b}.Q \mid {}^{b}\backslash_{\tau}.R) \xrightarrow{\tau \backslash_{\tau} \backslash_{b} \backslash_{\tau}} (\nu a)(P \mid Q \mid R)$$

The process algebra of linked interactions is a straightforward extension of CCS It includes CCS as a sub-calculus

Finer (bisimilarity over the) LTS wrt CCS: three kinds of meaningful observables

$$\tau \setminus a$$

$$\tau \setminus a$$
 $\qquad \qquad \tau \setminus * \setminus b \setminus \tau$

$$b \setminus_{\tau}$$

The process algebra of linked interactions is a straightforward extension of CCS lt includes CCS as a sub-calculus

Finer (bisimilarity over the) LTS wrt CCS: three kinds of meaningful observables

The process algebra of linked interactions is a straightforward extension of CCS lt includes CCS as a sub-calculus

Finer (bisimilarity over the) LTS wrt CCS: three kinds of meaningful observables

Some references

 U. Montanari and M. Sammartino. Network conscious pi-calculus. Technical Report TR-12-01, Computer Science Department, University of Pisa, 2012.

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

Name mobility

Ready to handle mobile ambients interactions

but we need to update locations of processes when ambient moves

some form of name mobility is needed

Handling name mobility

Aim: introduce polyadic communication and reuse/rely on pi as much as possible

One possibility: $a(\widetilde{x}) \backslash b\widetilde{y}.P$ each link receive some arguments and send some names... too complex

Another possibility: ${}^a\backslash_b\widetilde{x}.P$ each link in the chain carry the same list of arguments... but with different (send/receive) capabilities

Separation of concerns

$$P,Q,R ::= \cdots \mid \ell t.P$$

This way we separate the interaction mechanism ℓ from the name passing mechanism t

(We formalize them separately and then fit them together)

No need to reinvent the wheel

We can easily borrow from pi the name handling machinery (and free it from dyadic interaction legacy)

$$P \mid a(x).Q$$
 (waits input from P) $P' \mid Q[b/x]$

$$P \mid \overline{a}x.Q$$
 (outputs to P) $P' \mid Q$

$$P \mid (\nu x)\overline{a}x.Q$$
 (extrudes to P) $(\nu y)P' \mid Q[y/x]$

Tuple

$$t = \langle \widetilde{w} \rangle$$
 $w := x$ value (output) \underline{x} variable (input)

variables are instantiated by values

values are used for matching arguments

$$\langle n, m, \underline{x} \rangle$$

$$\langle \underline{y}, m, k \rangle$$

Tuple

$$t = \langle \widetilde{w} \rangle$$
 $w := x$ value (output) \underline{x} variable (input)

variables are instantiated by values

values are used for matching arguments

$$\langle n, m, \underline{x} \rangle$$
 Assigns n to y \downarrow = \uparrow Matches m with m Assigns k to x

Extrusion

an argument in a tuple can be extruded if it is not already annotated

extruded arguments are overlined

$$(va)w \triangleq \begin{cases} \bot & \text{if } w = \overline{a} \lor w = \underline{a} \\ \overline{a} & \text{if } w = a \\ w & \text{otherwise} \end{cases}$$

$$(va)\langle w_1, ..., w_n \rangle \triangleq \begin{cases} \langle (va)w_1, ..., (va)w_n \rangle & \text{if } \forall i \in [1, n].(va)w_i \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

$$(va)(st) \triangleq \begin{cases} ((va)s)((va)t) & \text{if } (va)s \neq \bot \land (va)t \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

Merge

$$w \bullet w' \triangleq \begin{cases} w & \text{if } (w = w' = v) \lor (w = w' = \underline{v}) \\ v & \text{if } (w = v \land w' = \underline{v}) \lor (w = \underline{v} \land w' = v) \\ \overline{v} & \text{if } (w = \overline{v} \land w' = \underline{v}) \lor (w = \underline{v} \land w' = \overline{v}) \\ \bot & \text{otherwise} \end{cases}$$

$$\langle w_1, ..., w_n \rangle \bullet \langle w'_1, ..., w'_n \rangle \triangleq \begin{cases} \langle w_1 \bullet w'_1, ..., w_n \bullet w'_n \rangle & \text{if } \forall i \in [1, n]. w_i \bullet w'_i \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

$$st \bullet s't' \triangleq \begin{cases} (s \bullet s')(t \bullet t') & \text{if } s \bullet s' \neq \bot \land t \bullet t' \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

(Relevant) SOS rules

$$\frac{\ell \in s \qquad g = t\rho}{\ell t \cdot P \xrightarrow{sg} P\rho} \text{ (Act)}$$

$$\frac{P \xrightarrow{sg} P' \quad a \notin g}{(va)P \xrightarrow{(va)sg} (va)P'} \text{(Res)} \qquad \frac{P \xrightarrow{sg} P' \quad a \in g}{(va)P \xrightarrow{(va)sg} P'} \text{(Open)}$$

(analogous to (early) pi rules)

(Relevant) SOS rules

$$\begin{array}{c|c}
 & (extruded names of g) \\
P \xrightarrow{sg} P' & ex(g) \cap fn(Q) = \emptyset \\
\hline
P|Q \xrightarrow{sg} P'|Q$$
(Lpar)

$$P \xrightarrow{sg} P' \qquad Q \xrightarrow{s'g'} Q' \qquad vars(g \bullet g') = \emptyset \qquad s \bullet s' \text{ is solid} \qquad \text{(Close)}$$

$$P|Q \xrightarrow{s \bullet s'} (vex(g \bullet g'))(P'|Q')$$

(analogous to (early) pi rules)

The process calculus of linked interactions with name mobility is a straightforward extension of pi lt includes pi as a sub-calculus

Finer (bisimilarity over the) LTS wrt pi (but it is a congruence)

Some references

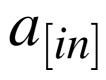
- Roberto Bruni, Ivan Lanese: Parametric synchronizations in mobile nominal calculi. Theor. Comput. Sci. 402(2-3): 102-119 (2008)
- Marco Carbone, Sergio Maffeis: On the Expressive Power of Polyadic Synchronisation in pi-calculus. Nord. J. Comput. 10(2): 70-98 (2003)

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

Encoding mobile ambients

 a_{in} requests from in capability



requests from an ambient with in capability inside

 a_{out}

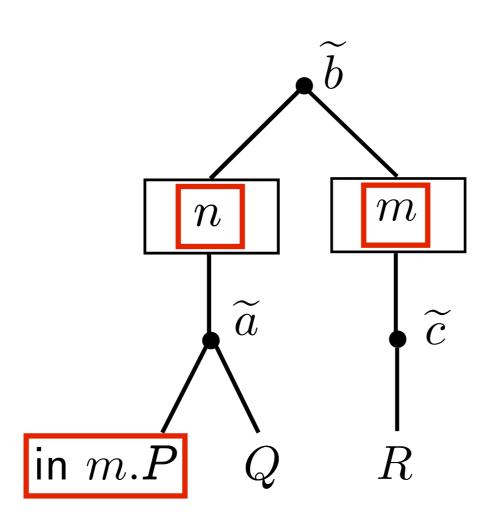
requests from out capability

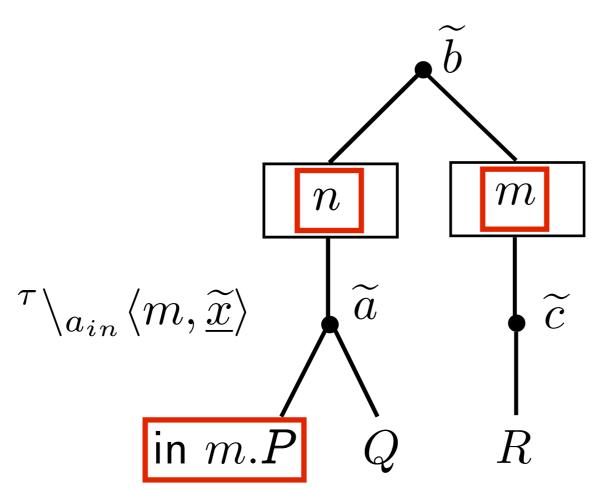
 $a_{[out]}$

requests from an ambient with out capability inside

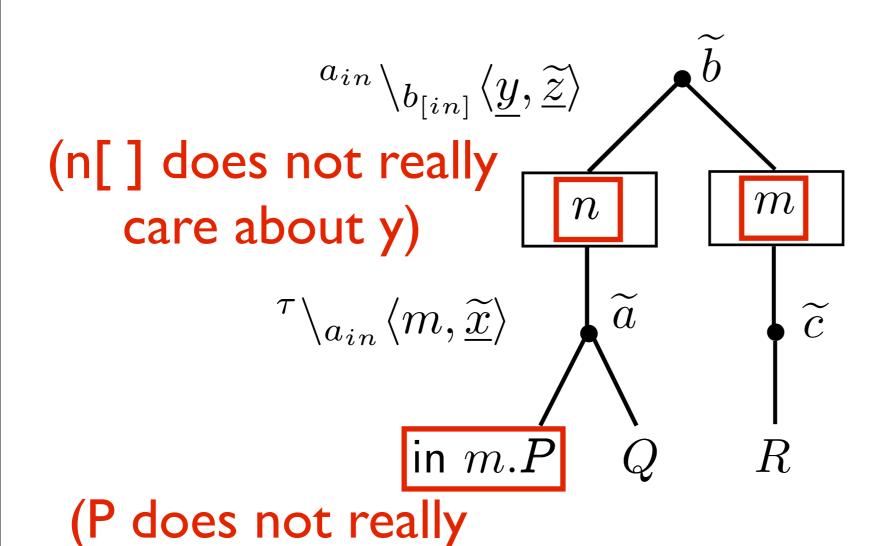
 a_{opn}

requests from open capability



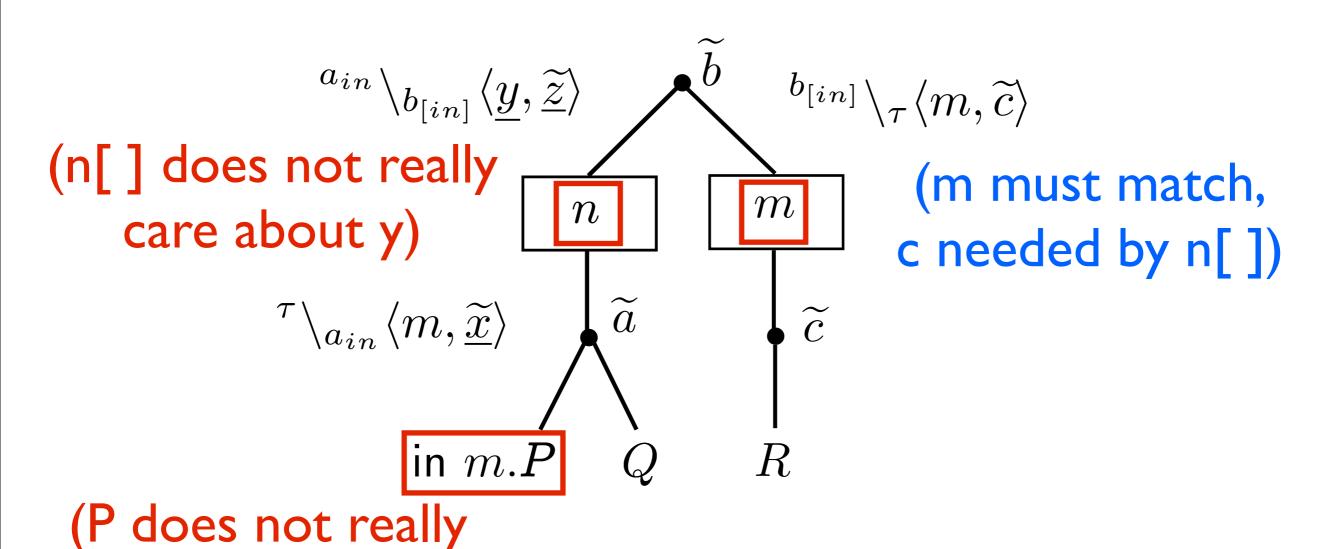


(P does not really care about x)



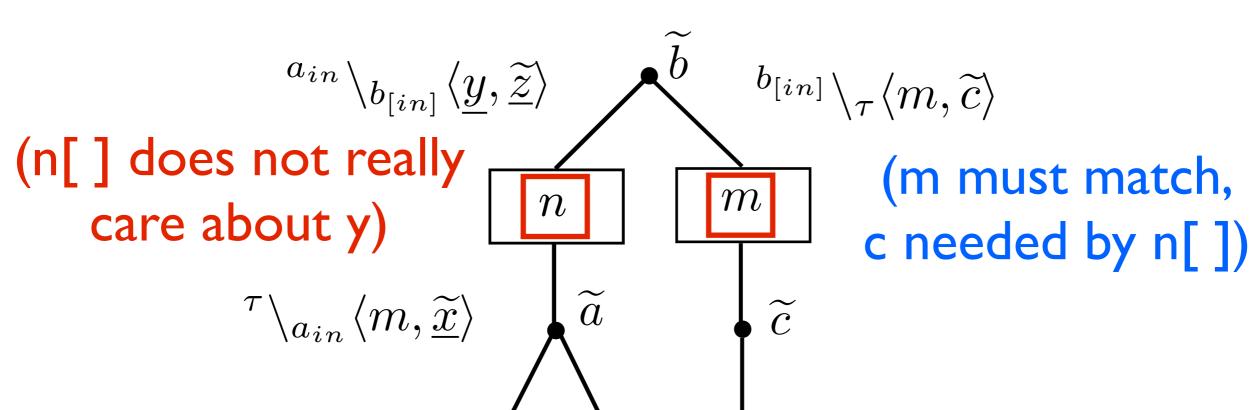
giovedì 7 giugno 2012

care about x)



care about x)

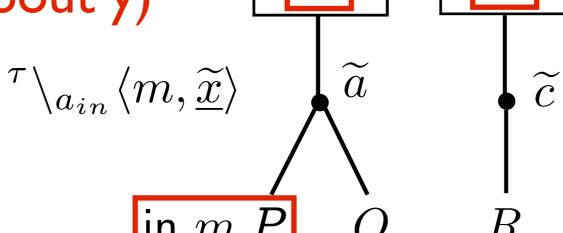
$${}^{\tau}\backslash_{a_{in}}^{a_{in}}\backslash_{b_{[in]}}^{b_{[in]}}\backslash_{\tau}\langle m,\widetilde{c}\rangle$$



(P does not really care about x)

$${}^{\tau}\backslash_{a_{in}}^{a_{in}}\backslash_{b_{[in]}}^{b_{[in]}}\backslash_{\tau}\langle m,\widetilde{c}\rangle$$

m



(P does not really care about x)

(m must match, c needed by n[])

 $b_{[in]} \setminus_{\tau} \langle m, \widetilde{c} \rangle$

c (and a) are typically restricted: c must be extruded

Desiderata

$$P o P'$$
 implies $\llbracket P
rbracket_{ ilde{a}} o \llbracket P'
rbracket_{ ilde{a}}$

$$\llbracket P
rbracket_{ ilde{a}} o Q$$
 implies $\exists P' \quad Q = \llbracket P'
rbracket_{ ilde{a}} \quad P o P'$

But both statements fail because of forwarders!

Roundabout

Extend ambients with parentheses

$$P ::= \cdots \mid \langle P \rangle$$

They are introduced when an ambient is dissolved

The encoding

```
[\![\mathbf{0}]\!]_{\tilde{a}} \triangleq \mathbf{0}
                                                                                                [n[P]]_{\tilde{a}} \triangleq (v\tilde{b})(Amb(n,\tilde{b},\tilde{a})|[P]_{\tilde{b}})
                                                                                                                            [\![P]\!]_{\tilde{a}} \triangleq (v\tilde{b})(Fwd(\tilde{b},\tilde{a})|\![P]\!]_{\tilde{b}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \llbracket P|Q \rrbracket_{\tilde{a}} \triangleq \llbracket P \rrbracket_{\tilde{a}} | \llbracket Q \rrbracket_{\tilde{a}}
                                                            \llbracket \operatorname{in} m.P \rrbracket_{\tilde{a}} \triangleq {}^{\tau} \setminus_{a_{in}} \langle m, \underline{\tilde{x}} \rangle. \llbracket P \rrbracket_{\tilde{a}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        [\![(\mathbf{v}n)P]\!]_{\tilde{a}} \triangleq (\mathbf{v}n)[\![P]\!]_{\tilde{a}}
                         \llbracket \mathsf{out} \, m.P \rrbracket_{\tilde{a}} \triangleq {}^{\tau} \setminus_{a_{out}} \langle m, \tilde{x} \rangle. \llbracket P \rrbracket_{\tilde{a}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \llbracket !P \rrbracket_{\tilde{a}} \triangleq \operatorname{rec} X. (\llbracket P \rrbracket_{\tilde{a}} | X)
 \llbracket \operatorname{\mathsf{open}} n.P \rrbracket_{\widetilde{a}} \triangleq {}^{\tau} \setminus_{a_{opn}} \langle n \rangle. \llbracket P \rrbracket_{\widetilde{a}}
Amb(n, \tilde{a}, \tilde{f}) \triangleq a_{in} \setminus_{f_{[in]}} \langle \underline{m}, \underline{\tilde{z}} \rangle.Amb(n, \tilde{a}, \tilde{z}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}) + f_{[in]} \setminus_{\tau} \langle n, \tilde{a} \rangle.Amb(n, \tilde{a}, \tilde{f}
                                                                                                                                                                                                                                                                                                                                                        a_{out}\setminus_{f_{[out]}}\langle \underline{m},\underline{\tilde{z}}\rangle.Amb(n,\tilde{a},\tilde{z})+a_{[out]}\setminus_{\tau}\langle n,\tilde{f}\rangle.Amb(n,\tilde{a},\tilde{f})+a_{[out]}\setminus_{\tau}\langle n,\tilde{f}\rangle.Amb(n,\tilde{a},\tilde{f})+a_{[out]}\langle n,\tilde{f}\rangle.Amb(n,\tilde{a},\tilde{f})
                                                                                                                                                                                                                                                                                                                                                        f_{opn} \setminus_{\tau} \langle n \rangle . Fwd(\tilde{a}, \tilde{f})
                                            Fwd(\tilde{a},\tilde{f}) \triangleq a_{in} \backslash_{f_{in}} \langle \underline{n},\underline{\tilde{x}} \rangle . Fwd(\tilde{a},\tilde{f}) + a_{[in]} \backslash_{f_{[in]}} \langle \underline{n},\underline{\tilde{x}} \rangle . Fwd(\tilde{a},\tilde{f}) + f_{[in]} \backslash_{a_{[in]}} \langle \underline{n},\underline{\tilde{x}} \rangle . Fwd(\tilde{a},\tilde{f}) + a_{[in]} \backslash_{a_{[in]}} \langle \underline{n},\underline{\tilde{x}} \rangle .
                                                                                                                                                                                                                                                                                                                                                        a_{out} \setminus_{f_{out}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \langle \underline{n}, \underline{\tilde{x}} \rangle . Fwd(\tilde{a}, \tilde{f}) + a_{[out]} \langle \underline{n}, \underline{\tilde{x}} \rangle .
                                                                                                                                                                                                                                                                                                                                                            a_{opn} \setminus_{f_{opn}} \langle \underline{n} \rangle . Fwd(\tilde{a}, \tilde{f}) + f_{opn} \setminus_{a_{opn}} \langle \underline{n} \rangle . Fwd(\tilde{a}, \tilde{f})
```

Some references

- Julian Rathke, Pawel Sobocinski: Deriving structural labelled transitions for mobile ambients. Inf. Comput. 208(10): 1221-1242 (2010)
- Filippo Bonchi, Fabio Gadducci, Giacoma Valentina Monreale: Reactive Systems, Barbed Semantics, and the Mobile Ambients. FOSSACS 2009: 272-287
- Massimo Merro, Francesco Zappa Nardelli: Behavioral theory for mobile ambients. J. ACM 52(6): 961-1023 (2005)
- Gian Luigi Ferrari, Ugo Montanari, Emilio Tuosto: A LTS Semantics of Ambients via Graph Synchronization with Mobility. ICTCS 2001: 1-16

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

Conclusion

Envisage interaction like a puzzle

A theory of linked interactions

Derive standard first-order LTS semantics (and suitable bisimilarities congruences)

Ongoing work

Relation with existing LTS semantics for mobile ambients (conjecture: slightly finer equivalence)

Future work

Expressiveness

Extensions:
non-simple prefixes
graph-driven interaction

$$\tau a * * b c c \tau \tau \tau$$

Future work

Expressiveness

Extensions:
non-simple prefixes
graph-driven interaction

$$\tau a * * b c c \tau \tau \tau$$

