

Embedding reaction systems into link-calculus

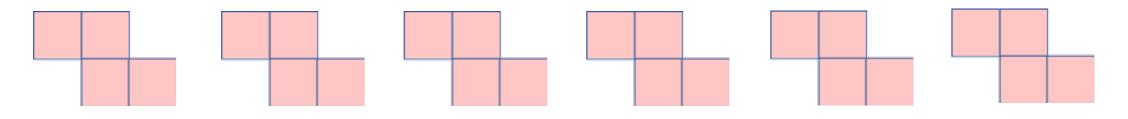
Linda Brodo (Sassari)

joint work with

Roberto Bruni (Pisa)

Moreno Falaschi (Siena)

SECOND INTERNATIONAL WORKSHOP ON REACTION SYSTEMS JUNE 5-7, 2019 TORUŃ, POLAND



Roadmap

- An open multi-party calculus
 (joint work with Roberto Bruni and Chiara Bodei -Univ. of Pisa-)
- Encoding reactions
- Encoding entities
- Encoding contexts
- Enhancing expressivity for reaction systems
- Conclusion and future work

Interaction

An interaction is an action by which (communicating) processes can influence each other.

Multiparty interaction

An interaction is multiparty when it involves two or more processes



Open interaction

An interaction is open when the number of involved processes is not fixed

Notation

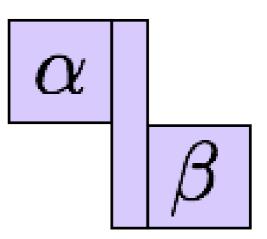
a interaction over a

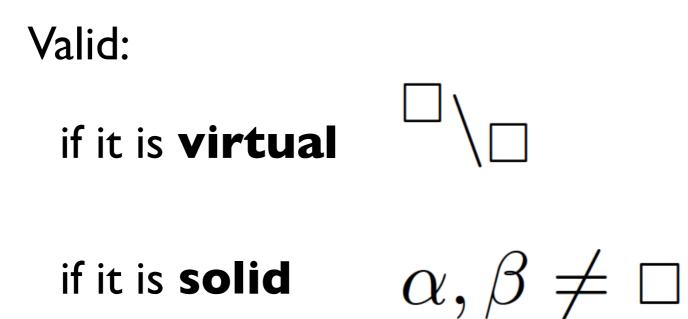
au silent interaction

free "slot", accepting any interaction (only in labels)

Link

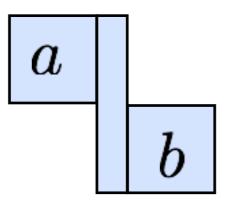
$$\alpha \setminus \beta$$
 From α to β

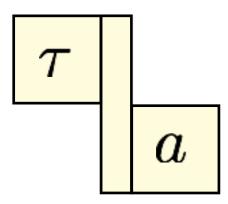


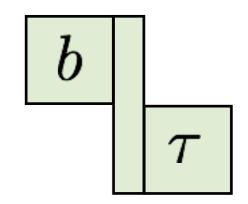


Example: three party

	Swiss-ba	ank box	
1		8199	
	A A	8199	







Link chain

$$^{\alpha_1}\backslash_{\beta_1} \ ^{\alpha_2}\backslash_{\beta_2} \ \cdots \ ^{\alpha_n}\backslash_{\beta_n}$$

 ${\cal C}$ is the set of channel names

such that:

 $\beta_i, \alpha_{i+1} \in \mathcal{C}$ implies $\beta_i = \alpha_{i+1}$ $\beta_i = \tau$ iff $\alpha_{i+1} = \tau$

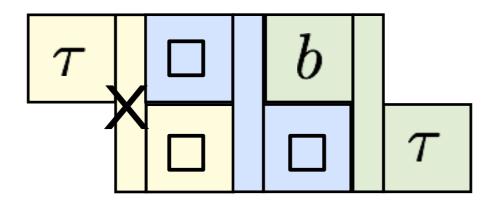
Link chain: terminology

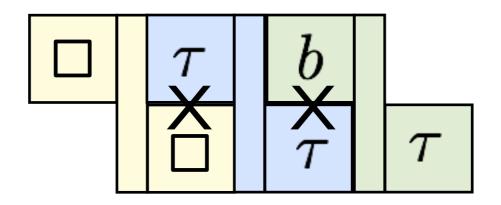
$$^{\alpha_1}\backslash_{\beta_1} \ ^{\alpha_2}\backslash_{\beta_2} \ \cdots \ ^{\alpha_n}\backslash_{\beta_n}$$

Solid:

if all its links are so

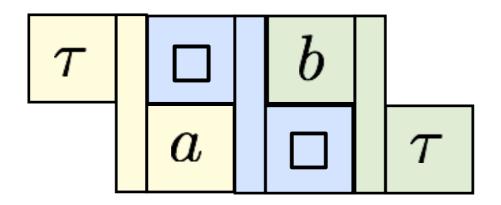
Counter-examples



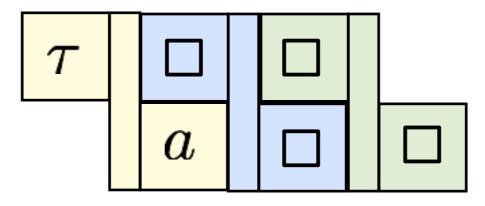


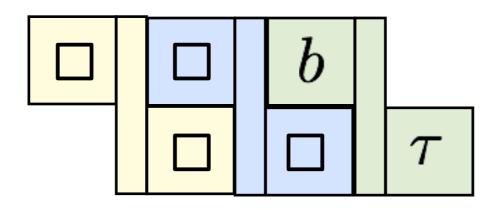
Examples: non solid

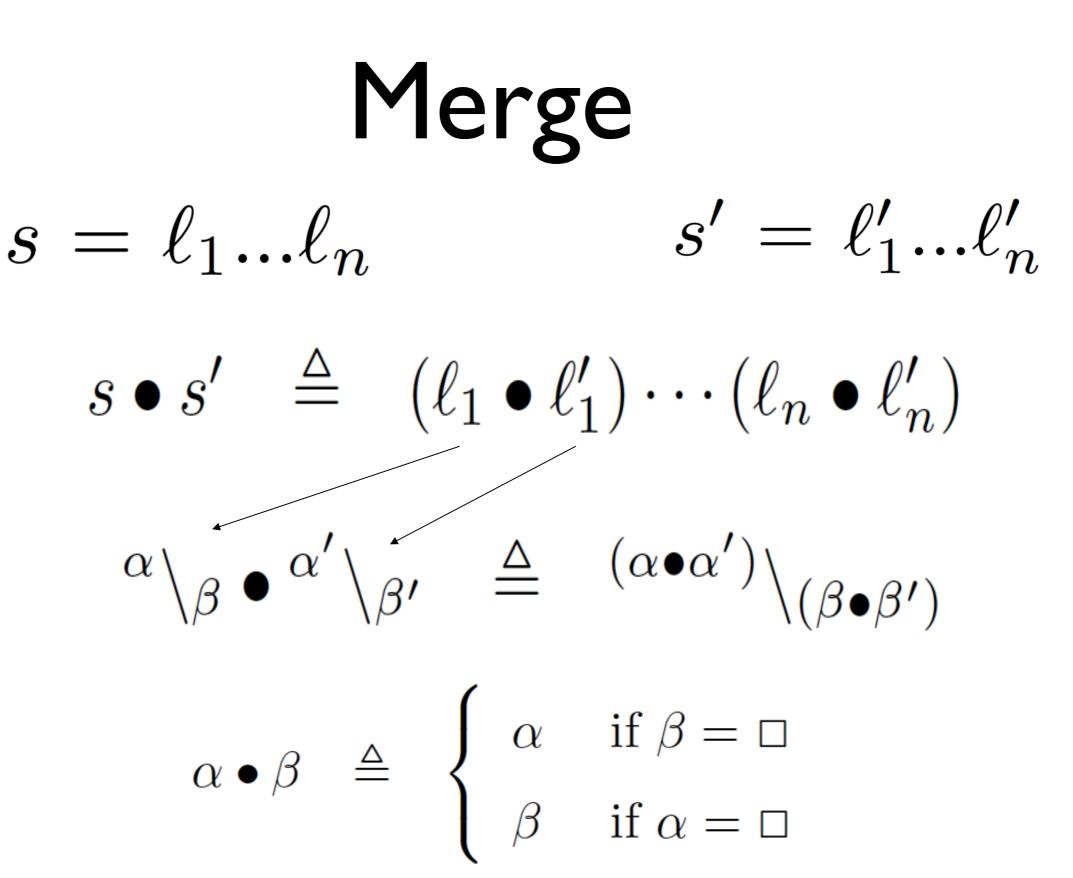
Virtual links can be read as missing pieces of the puzzle



Examples: merge

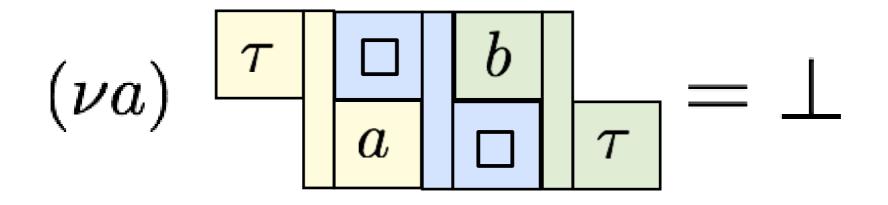


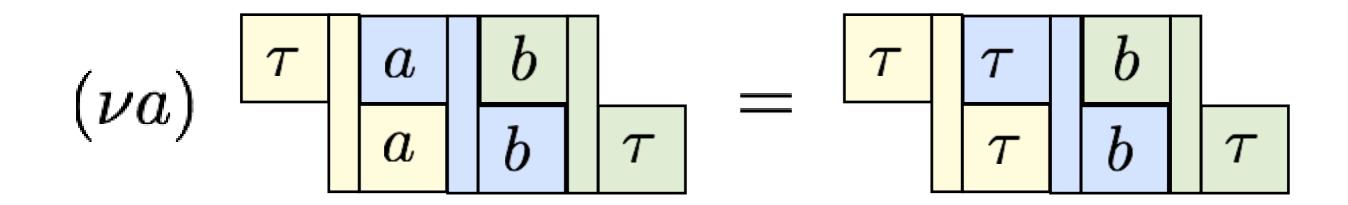




The result is undefined if the outcome is not valid

Examples: restriction





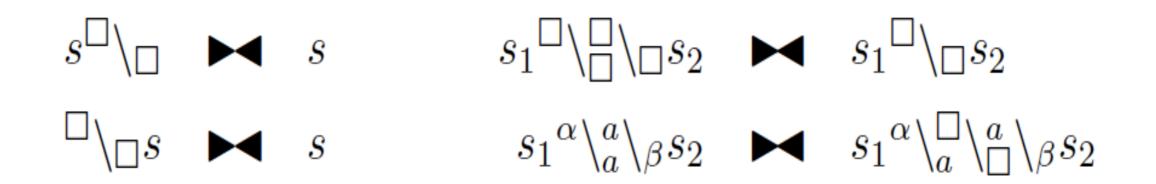
Restriction

$$(\nu a)s \triangleq \begin{cases} ((\nu a)\ell_1)\dots((\nu a)\ell_n) & \text{if } a \text{ is } matched \text{ in } s \\ \bot & \text{otherwise} \end{cases}$$

$$(\nu a)^{\alpha} \setminus_{\beta} \triangleq ((\nu a)\alpha) \setminus ((\nu a)\beta)$$

$$(\nu a)\alpha \triangleq \begin{cases} \tau & \text{if } \alpha = a \\ \alpha & \text{otherwise} \end{cases}$$

Equivalence relation over link chains (the black tie)



link-calculus syntax

very closed to the CCS syntax

(Relevant) SOS rules

the length of the link chains (of a transition) is decided by the semantics

$$\frac{s \blacktriangleright \ell}{\ell . P \xrightarrow{s} P} (Act)$$

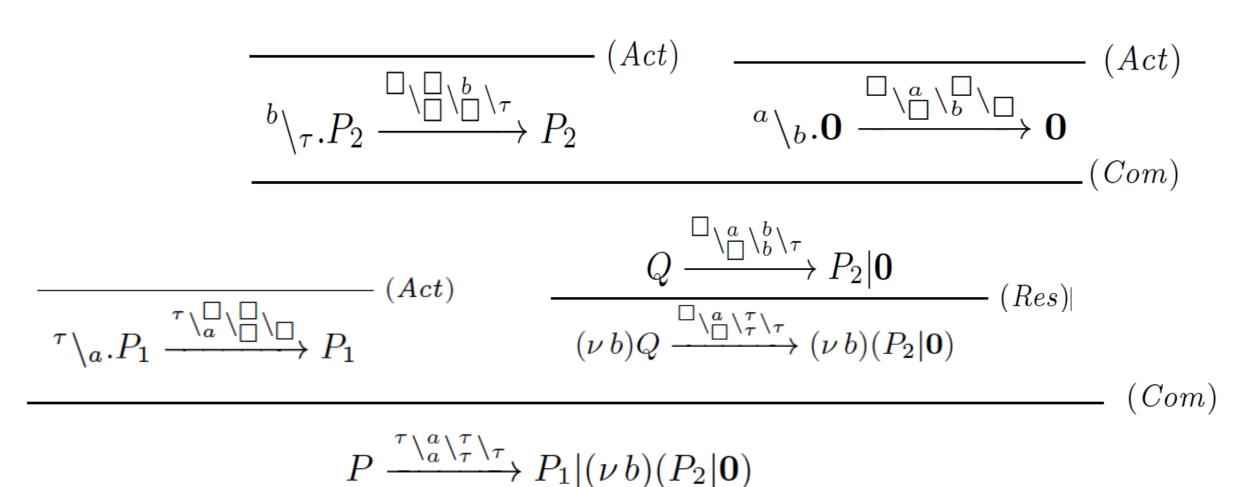
$$\frac{P \xrightarrow{s} P'}{(\nu a)P \xrightarrow{(\nu a)s} (\nu a)P'} (Res)$$

$$\frac{P \xrightarrow{s} P'}{P|Q \xrightarrow{s} P'|Q} (Lpar)$$

$$\frac{P \xrightarrow{s} P' \qquad Q \xrightarrow{s'} Q'}{P|Q \xrightarrow{s \bullet s'} P'|Q'} (Com)$$

Example

 $P \triangleq \tau \setminus_a P_1 | (\nu b) Q, Q \triangleq b \setminus_{\tau} P_2 | a \setminus_b Q$



Bibliography

Bodei, C., Brodo, L., Bruni, R. A Formal Approach to Open Multiparty Interactions (2019) Theoretical Computer Science, Volume 763: pp. 38-65

Brodo, L., Olarte, C. Symbolic semantics for multiparty interactions in the link-calculus (2017) Lecture Notes in Computer Science, volume 10139 LNCS, pp. 62-75

Bodei, C., Brodo, L., Bruni, R., Chiarugi, D. A flat process calculus for nested membrane interactions (2014) Scientific Annals of Computer Science Volume 24, Issue 1, pp. 91-136

Bodei, C., Brodo, L., Bruni, R. Open multiparty interaction (2013) Lecture Notes in Computer Science, volume 7841 LNCS, pp. 1-23 Bodei, C., Brodo, L., Bruni, R. The link-calculus for Open Multiparty Interactions submitted to Information and Computation

Brodo, L., Olarte, C. Verification techniques for a network algebra submitted to Fundamenta Informaticae

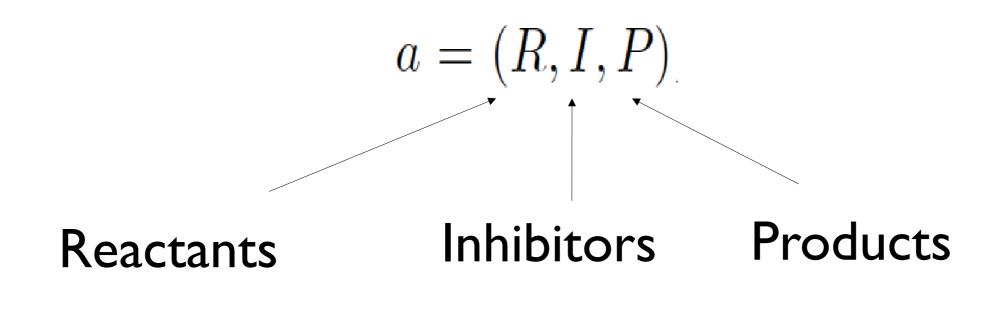
The link-calculus homepage: http://linkcalculus.di.unipi.it

Roadmap

- An open multi-party calculus
- Encoding reaction systems
- Encoding entities
- Encoding contexts
- Enhancing expressivity for reaction systems
- Conclusion and future work

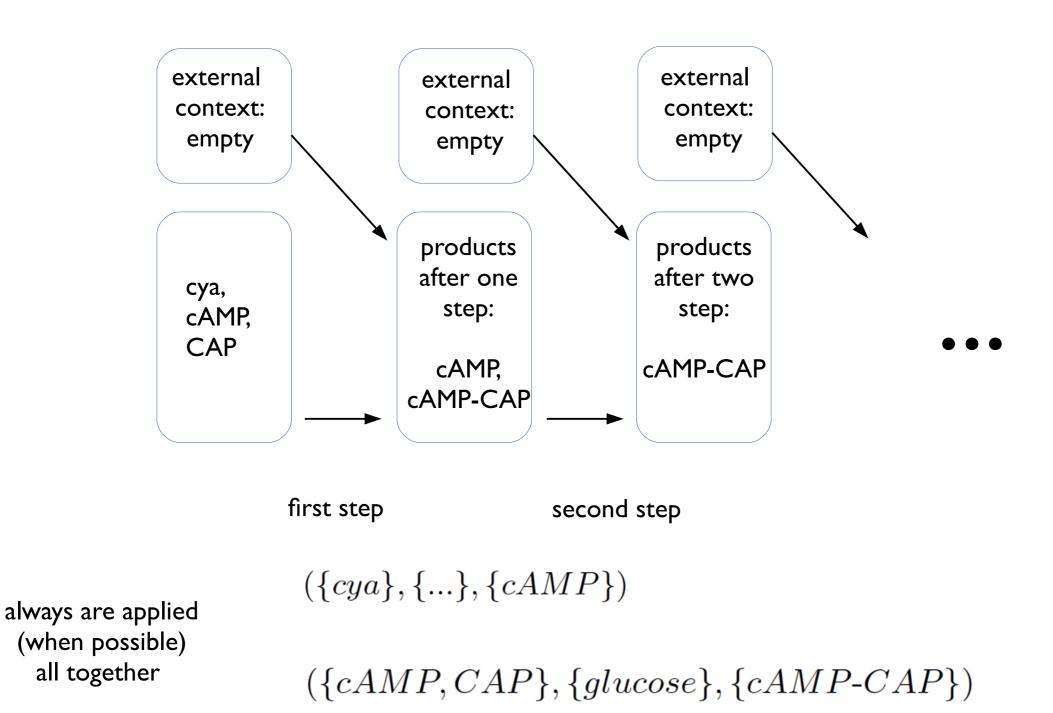
Reaction Systems

A reaction system is a set of rules of the type:



 $({cAMP, CAP}, {glucose}, {cAMP-CAP})$

Reaction Systems



The chained link-calculus

Is a version of the link-calculus where prefixes are link chains.

syntax
$$P,Q ::= \sum_{i \in I} v_i P_i \mid P|Q \mid (\nu a)P \mid P[\phi] \mid A$$

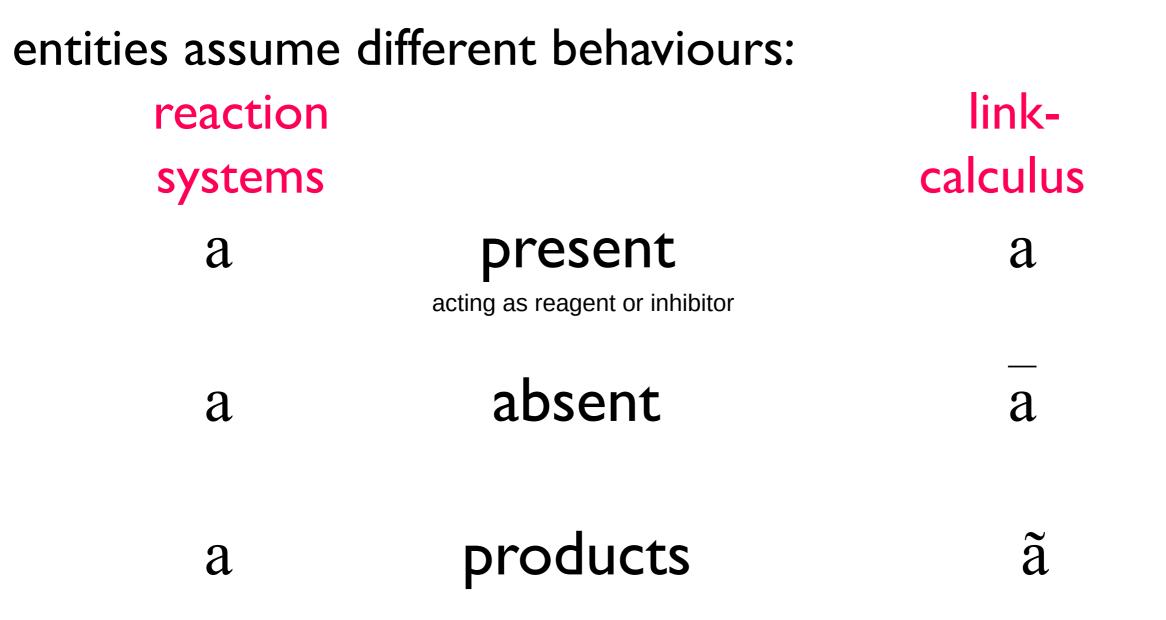
link chain prefix

$$v = \ell_1 \dots \ell_n$$

relevant semantic rule

$$\frac{v \blacktriangleright v_j}{\sum_{i \in I} v_i \cdot P_i \xrightarrow{v} P_j} (Sum)$$

Encoding reaction systems: usage of the names



Encoding reactions (when applicable)

assuming a rs with only 2 reactions, and 5 entities:

reaction I
$$(\{cya\}, \{...\}, \{cAMP\})$$

reaction 2 $({cAMP, CAP}, {glucose}, {cAMP-CAP})$

encoding the two reactions as link-calculus processes

reaction I
$$P_1 \triangleq \tau \backslash_{cya_i}^{\Box} \backslash_{cAMP_i}^{\Box} \backslash_{\Box}^{cAMP_o} \backslash_{r_2}^{CAMP_o} \backslash_{r_2} P_1 + \dots$$

reaction 2

$$P_{2} \triangleq {}^{r_{2}} \backslash_{cAMP_{i}}^{\Box} \backslash_{\Box}^{cAMP_{o}} \backslash_{CAP_{i}}^{\Box} \backslash_{glucose_{i}}^{\Box} \backslash_{alcose_{i}}^{\overline{glucose}_{o}} \backslash_{cAMP-CAP_{i}}^{\Box} \backslash_{\Box}^{cAMP-CAP_{o}} \backslash_{\tau}.P_{2} + \dots$$

when the reaction is not applicable, we still execute the process encoding the reaction

reaction 2
$$(\{cAMP, CAP\}, \{glucose\}, \{cAMP-CAP\})$$

 $P_2 \triangleq \dots +$
 $r_2 \setminus \square_{glucose_i} \setminus \square^{glucose_o} \setminus_{\tau} \cdot P_2$
 $+$
 $r_2 \setminus \square_{cAMP_i} \setminus \square^{\overline{cAMP}_o} \setminus_{\tau} \cdot P_2$
 $+$
 $r_2 \setminus \square_{CAP_i} \setminus \square^{\overline{CAP}_o} \setminus_{\tau} \cdot P_2$

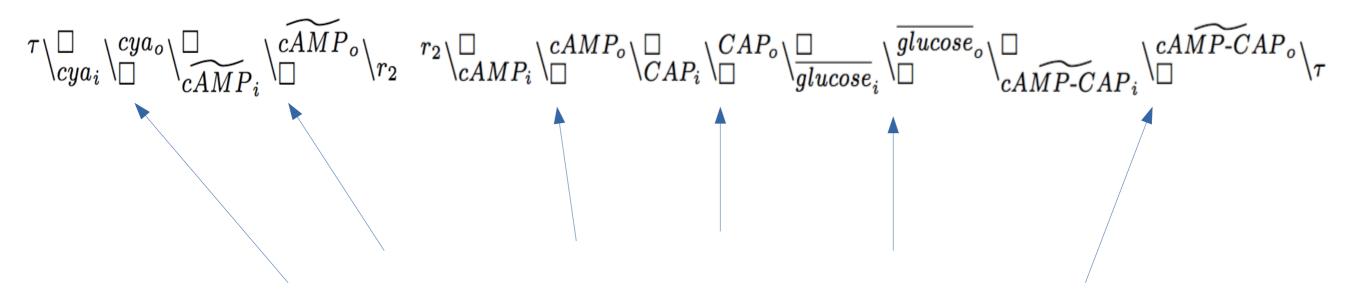
the link chain prefixes of the two reactions can be linked

$${}^{\tau}\backslash_{cya_{i}}^{\Box}\backslash_{\Box}^{cya_{o}}\backslash_{\widetilde{cAMP}_{i}}^{\Box}\backslash_{\Box}^{\widetilde{cAMP}_{o}}\backslash_{r_{2}} {}^{r_{2}}\backslash_{cAMP_{i}}^{\Box}\backslash_{\Box}^{cAMP_{o}}\backslash_{CAP_{i}}^{\Box}\backslash_{\Box}^{CAP_{o}}\backslash_{\overline{glucose}_{i}}^{\Box}\backslash_{\Box}^{\overline{glucose}_{o}}\backslash_{cAMP-CAP_{i}}^{\Box}\backslash_{\Box}^{\widetilde{cAMP-CAP_{o}}}\backslash_{\Box}^{\tau}$$

the link chain prefixes of the two reactions can be linked

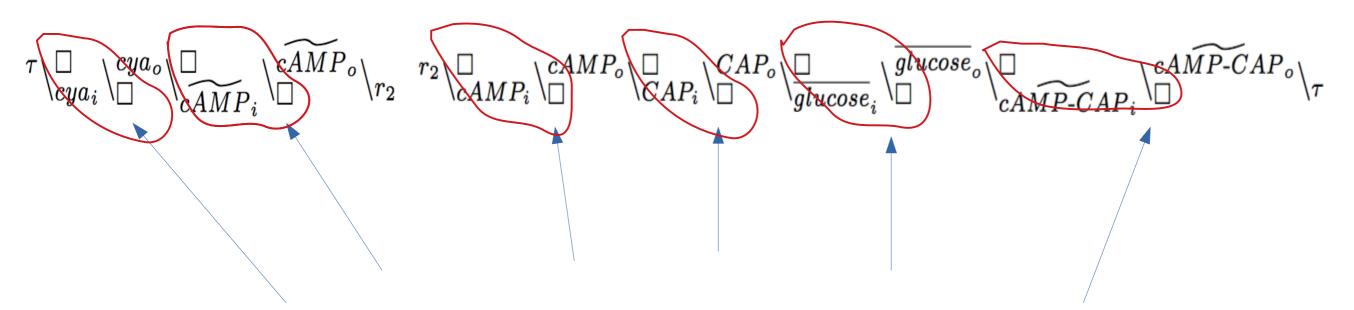
$$^{\tau}\backslash_{cya_{i}}^{\Box}\backslash_{cAMP_{i}}^{Cya_{o}}\backslash_{cAMP_{i}}^{\Box}\backslash_{\Box}^{\widetilde{cAMP_{o}}}\backslash_{r_{2}}^{\tau_{2}}\backslash_{cAMP_{i}}^{\Box}\backslash_{\Box}^{CAMP_{o}}\backslash_{CAP_{i}}^{\Box}\backslash_{\Box}^{CAP_{o}}\backslash_{\overline{glucose}_{i}}^{\Box}\backslash_{\Box}^{\overline{glucose}_{o}}\backslash_{cAMP-CAP_{i}}^{\Box}\backslash_{\Box}^{\widetilde{cAMP-CAP_{o}}}\backslash_{\tau}^{\tau}$$

the link chain prefixes of the two reactions can be linked (forming a sort of communication backbone):



what is still missing is the contribution of the single entities (molecules)

the link chain prefixes of the two reactions can be linked (forming a sort of communication backbone):



what is still missing is the contribution of the single entities (molecules)

Roadmap

- An open multi-party calculus
- Encoding reaction systems
- Encoding entities
- Encoding contexts
- Enhancing expressivity for reaction systems
- Conclusion and future work

Enconding entities

When the entity is present or produced

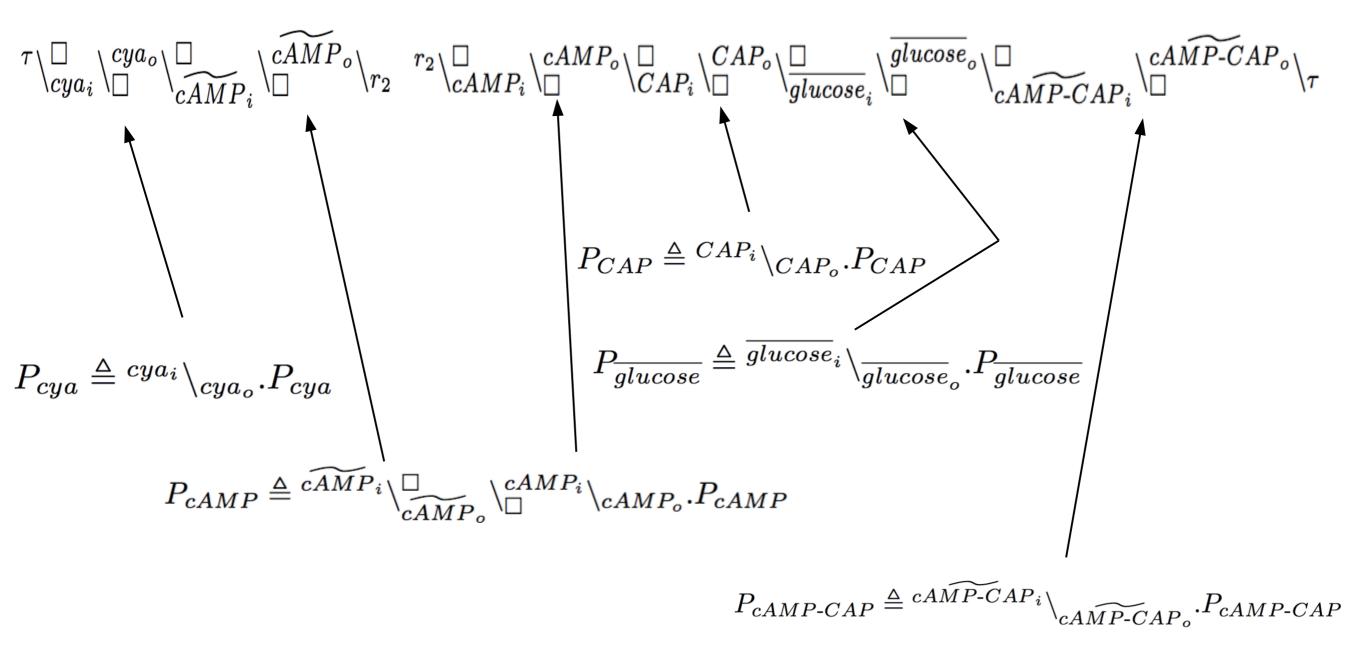
$$P_{cya} \triangleq \sum_{h,k\geq 0} (^{cya_i} \backslash_{cya_o}^{\Box} \backslash_{\Box})^h (^{c\tilde{y}a_i} \backslash_{c\tilde{y}a_o}^{\Box} \backslash_{\Box})^k . P_{cya} + \sum_{h\geq 0} (^{cya_i} \backslash_{cya_o}^{\Box} \backslash_{\Box})^h . \overline{P_{cya}}$$

Enconding entities

When the entity is absent or produced

$$\overline{P_{cya}} \triangleq \sum_{h,k\geq 0} (\overline{^{cya}}_i \setminus \frac{\Box}{cya}_o \setminus \Box)^h (\overline{^{cya}}_i \setminus \frac{\Box}{cya}_o \setminus \Box)^k . P_{cya} + \sum_{h\geq 0} (\overline{^{cya}}_i \setminus \frac{\Box}{cya}_o \setminus \Box)^h . \overline{P_{cya}}$$

The enconding: reactions + entities



encoding the entities

Roadmap

- An open multi-party calculus
- Encoding reaction systems
- Encoding entities
- Encoding contexts
- Enhancing expressivity for reaction systems
- Conclusion and future work

Enconding reaction systems:

(more) usage of the names

link-

entities assume different roles: reaction calculus systems

> provided by the context â a

> not provided by the context a a (absence)

Adding contexts

how a context behaves

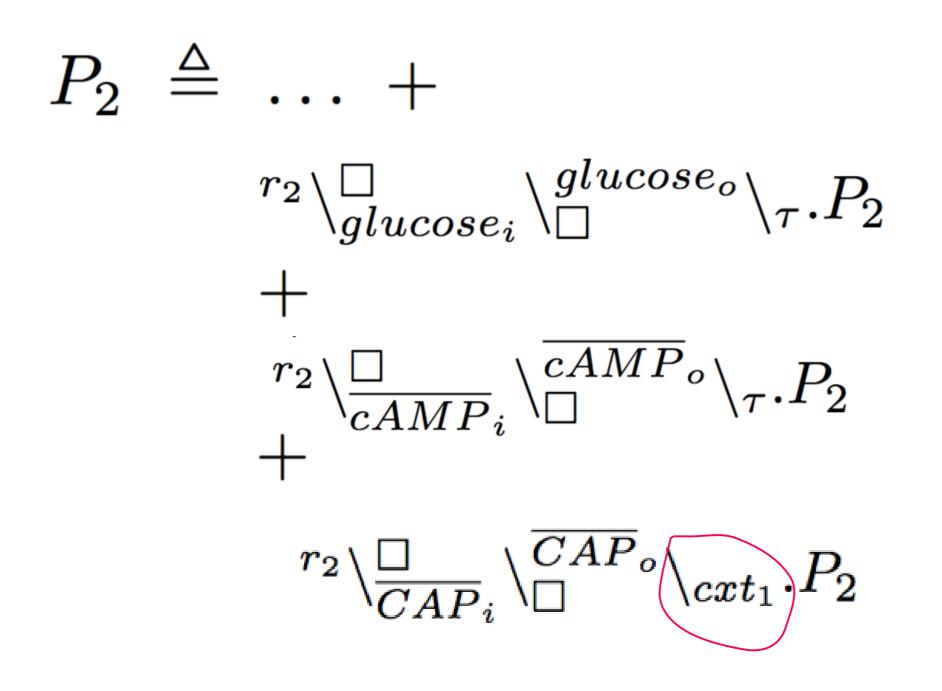
$$Cxt_{cya}^{n} \triangleq \begin{cases} cxt_{j} \backslash_{C\hat{y}a_{i}}^{\Box} \backslash_{C\hat{y}a_{o}}^{C\hat{y}a_{o}} \backslash cxt_{j+1}^{n+1} Cxt_{cya}^{n+1} \\ cxt_{j} \backslash_{C\hat{y}a_{i}}^{\Box} \backslash_{C}^{Cya_{o}} \backslash cxt_{j+1}^{n+1} Cxt_{cya}^{n+1} \end{cases}$$

$$Cxt_{cya} \triangleq Cxt_{cya}^1$$

Make contexts synchronise with entities

$$P_{cya} \triangleq \sum_{h,k\geq 0} (^{cya_i} \backslash_{cya_o}^{\Box} \backslash_{\Box})^h (\hat{cya_i} \backslash_{c\hat{y}a_o}^{\Box} \backslash_{C\hat{y}$$

Make contexts synchronise with reactions

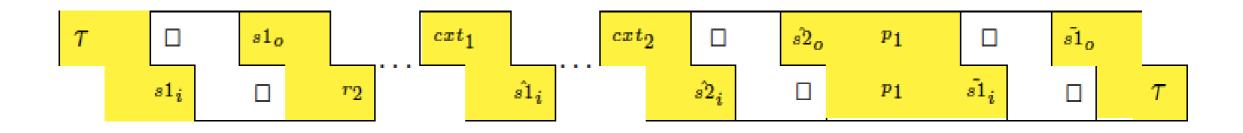


Roadmap

- An open multi-party calculus
- Encoding reaction systems
- Encoding entities
- Encoding contexts
- Enhancing expressivity for reaction systems
- Conclusion and future work

What we gain:

- recursive contexts
- modeling mutating entities
- Communicating reaction systems: for example, the lac operon system (that depends on the presence or absence of the glucose) can be connected with the system producing the glucose.
- modeling style: backbone + resources: the processes encoding the reactions and the context form the backbone; processes encoding entities provide the resources.

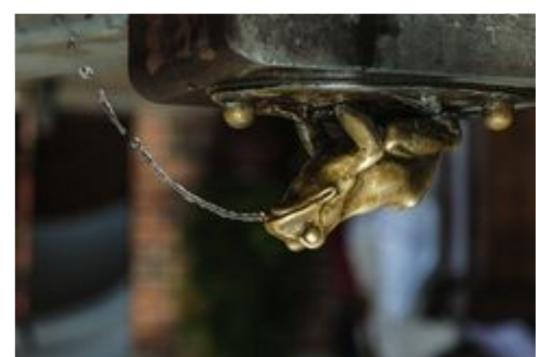


Future work

We would like to:

- model two communicating reaction systems;
- model a reaction system with mutating entities;
- exploit the nature of process algebra to define properties
 of reaction systems;

THANKS FOR YOUR ATTENTION! questions ?... any suggestion ?



THANKS FOR YOUR ATTENTION!

questions ? ... any suggestion ?