Symbolic semantics for multiparty interactions in the link-calculus

Linda Brodo (University of Sassari, Italy)

joint work with Carlos Olarte

(Universidade Federal do Rio Grande do Norte, Brazil)

Setting

Modelling concurrent communicating systems

Process calculi approach

Symbolic semantics

(some basic knowledge of CCS assumed, some details omitted)

Roadmap

- A brief introduction to the link-calculus
- Symbolic link chains
- Definition of the symbolic semantics
- Definition of the symbolic bisimulation
- Conclusion and future work

Interaction

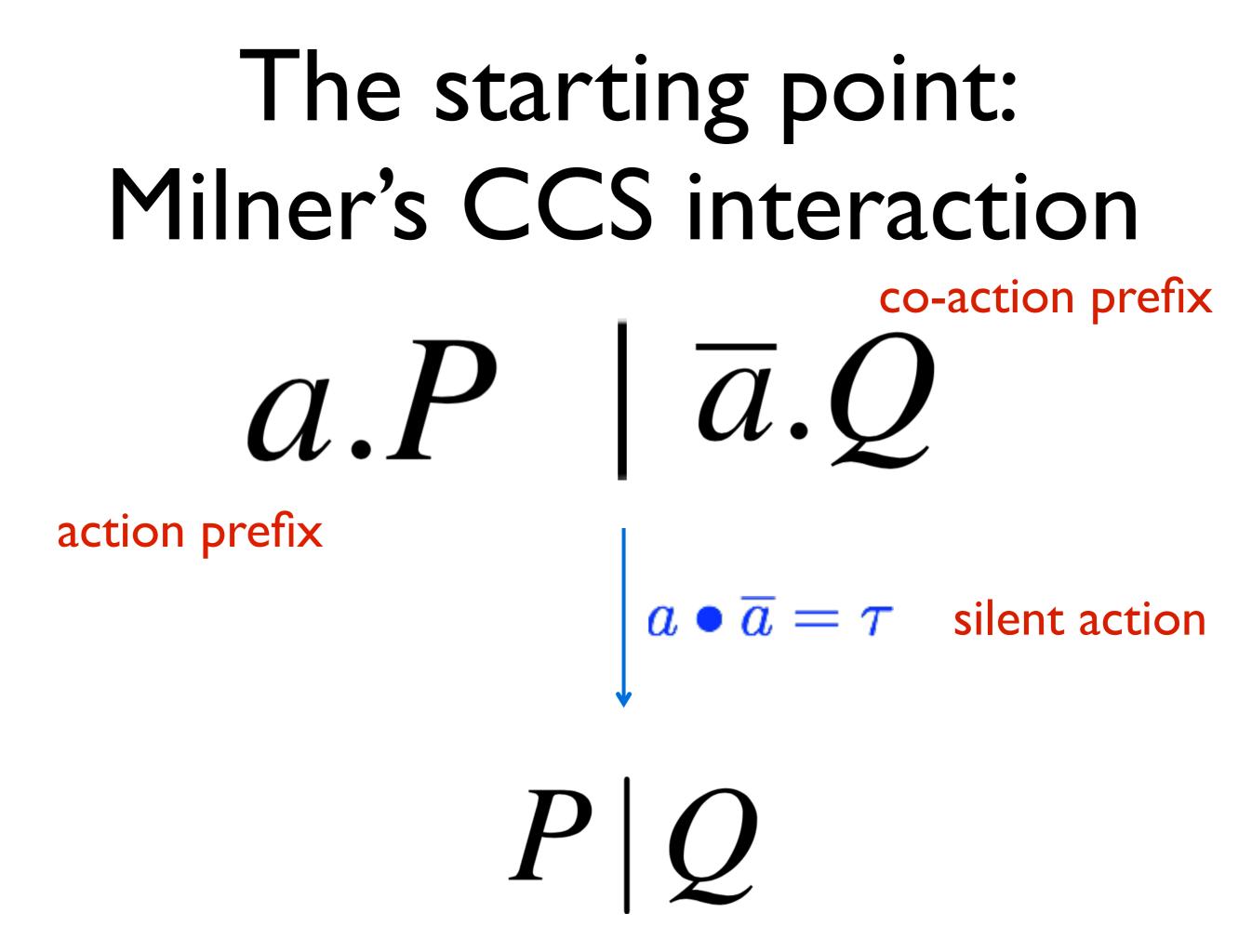
An interaction is an action by which (communicating) processes can influence each other

The starting point: Milner's CCS interaction $a.P \mid \overline{a}.Q$

 $P \mid O$

action prefix

silent action



Would you...?

...model piano playing using dyadic interaction

Open multiparty interactions are like playing piano (either bad or good, it does not matter)

Any better abstraction?

Internet Biology Social networks

I/O is the basic form of interaction but "one size won't fit all"

(it is possibly misleading to think otherwise: not all interactions are mutual/reciprocal)

Kid's puzzle

Mutual (binary) interaction

Multiparty interaction

An interaction is multiparty when it involves two or more processes



Open interaction

An interaction is open when the number of involved processes is not fixed

Our aim

Extend in a smooth and coherent way the theory of dyadic interaction to deal with open multipary iteractions

Process algebra ops

 $\begin{array}{ccc} \mathbf{0} & \text{nil} \\ \mu.P & \text{action prefix} \\ P+Q & \text{sum} \\ P \mid Q & \text{parallel} \\ (\nu a)P & \text{restriction} \\ & & !P & \text{replication} \end{array}$

X process variable rec X.P recursive process

 $P[\phi]$ renaming

Linked interaction

We regard an interaction as a chain of links (still a kid's puzzle after all)

Process algebra ops nil 0 μP action prefix P+Q sum We take as action $P \mid Q$ parallel the offering of a link $(\nu a)P$ restriction !P replication

X process variable rec X.P recursive process

 $P[\phi]$ renaming

Notation

a interaction over a

au silent interaction

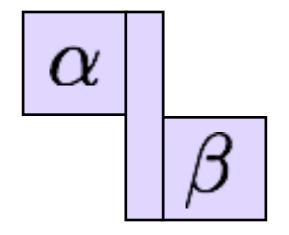
□ any interaction (only in labels)

Link

$\alpha \setminus \beta$ From α to β

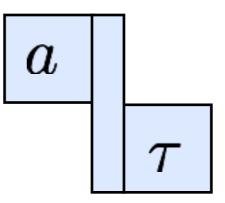
Valid:

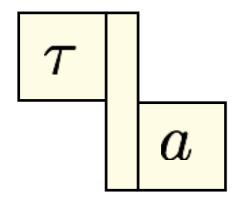
$\alpha = \beta = \Box$ or $\alpha, \beta \neq \Box$



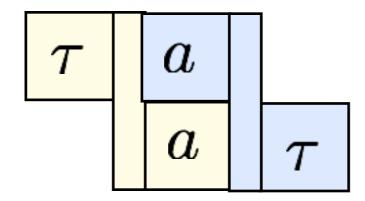
Solid (otherwise)

Examples: CCS-like

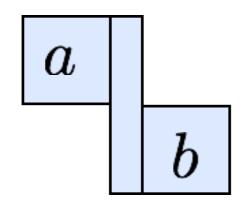


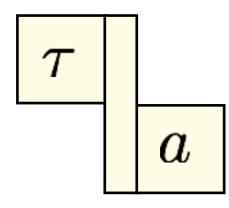


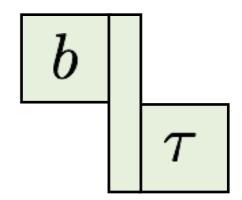
Examples: CCS-like



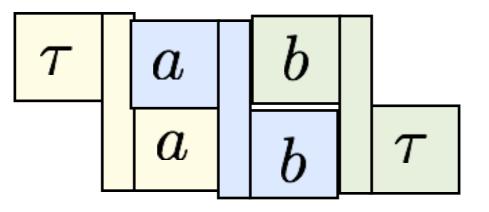
Examples: three party Swiss-bank box







Examples: three party Swiss-bank box



Link chain

$$\alpha_1 \setminus \beta_1 \quad \alpha_2 \setminus \beta_2 \quad \dots \quad \alpha_n \setminus \beta_n$$

such that:

$$eta_i, lpha_{i+1} \notin \{ au, \Box\} ext{ implies } eta_i = lpha_{i+1}$$
 $eta_i = au ext{ iff } lpha_{i+1} = au$
 $orall i. lpha_i, eta_i \in \{ au, \Box\} ext{ implies } orall i. lpha_i = eta_i = au$

Link chain: terminology

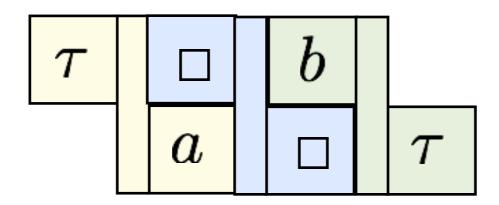
Solid: if all its links are so

Simple: if it contains exactly one solid link

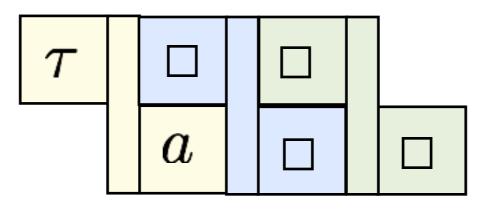
 $s \models \ell:$ s is simple and ℓ is the only solid link in s

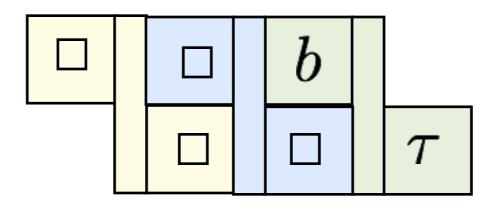
Examples: non solid

Virtual links $\Box \setminus \Box$ can be read as missing pieces of the puzzle

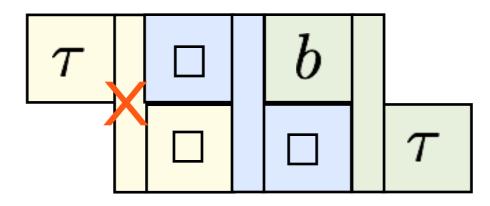


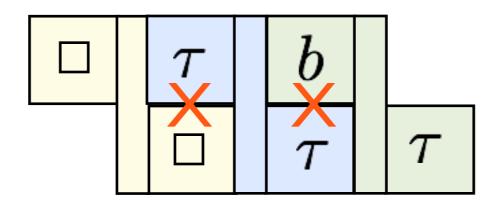
Examples: simple





Counter-examples



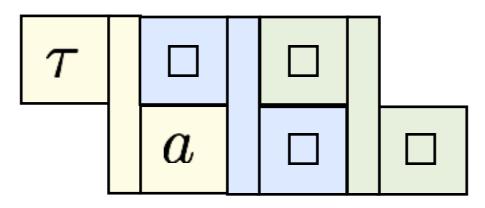


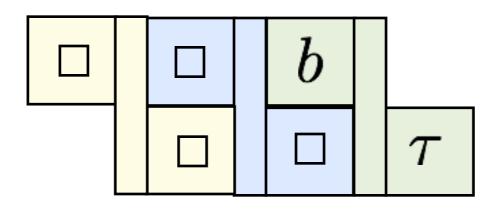
(Relevant) SOS rules

$$\frac{s \blacktriangleright \ell}{\ell \cdot P \xrightarrow{s} P}$$
(Act)

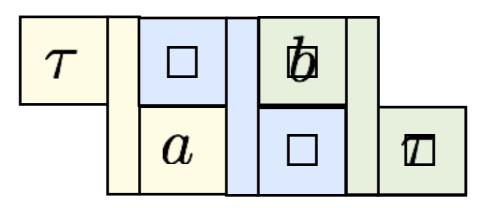
equivalence relation

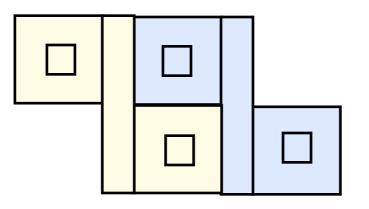
Examples: merge





Examples: merge





The definition extends to chains element-wise (the result is undefined if the outcome is not valid)

Restriction

matched action

$$(\nu a)(\alpha_1 \setminus_{\beta_1} \alpha_2 \setminus_{\beta_2} \dots \alpha_n \setminus_{\beta_n})$$

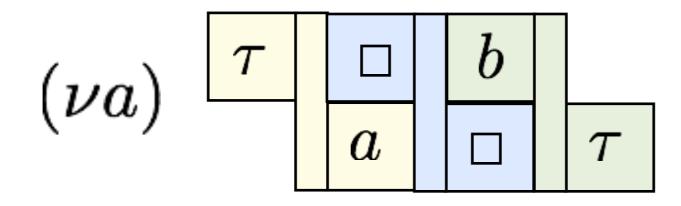
1. $a \neq \alpha_1, \beta_n$, and

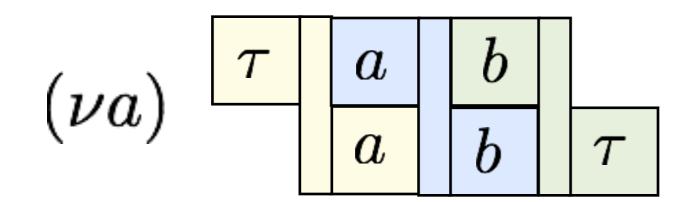
2. for any $i \in [1, n-1]$, either $\beta_i = \alpha_{i+1} = a$ or $\beta_i, \alpha_{i+1} \neq a$.

restriction

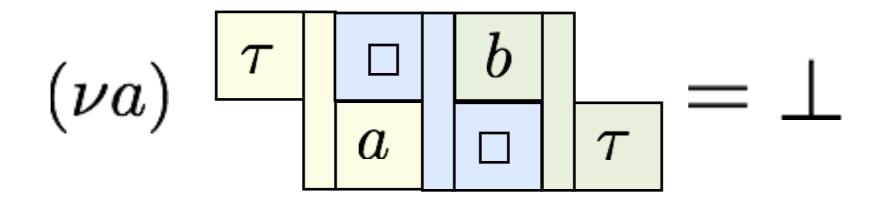
$$(\nu a)(^{\alpha_1} \backslash_{\beta_1} {}^{\alpha_2} \backslash_{\beta_2} \dots {}^{\alpha_n} \backslash_{\beta_n}) \triangleq ((\nu a)\alpha) \backslash_{((\nu a)\beta)}$$
$$(\nu a)\alpha \triangleq \begin{cases} \tau & \text{if } \alpha = a \\ \alpha & \text{otherwise} \end{cases}$$

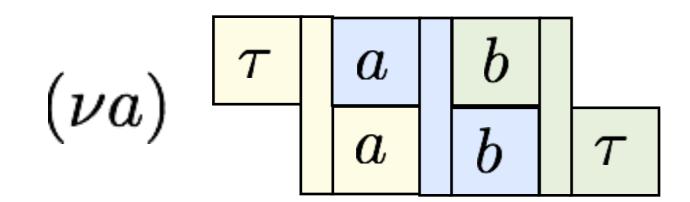
Examples: restriction



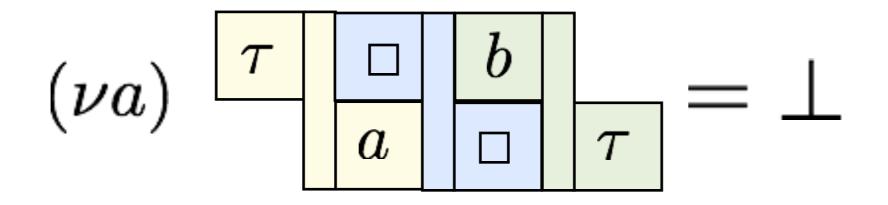


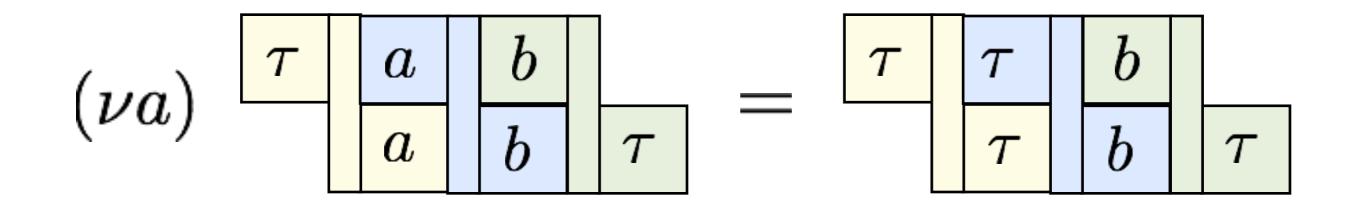
Examples: restriction





Examples: restriction





(Relevant) SOS rules

$$\frac{s \blacktriangleright \ell}{\ell \cdot P \xrightarrow{s} P}$$
(Act)

equivalence relation

(Relevant) SOS rules
$$P \stackrel{s}{\rightarrow} P'$$

$$\frac{s \blacktriangleright \ell}{\ell \cdot P \xrightarrow{s} P} (\text{Act}) \qquad \frac{P \rightarrow P'}{(\nu \, a)s} (\text{Res})$$

$$\frac{\ell \cdot P \xrightarrow{s} P}{(\nu \, a)P} \xrightarrow{(\nu \, a)s} (\nu \, a)P'$$

$$\frac{P \xrightarrow{s} P'}{P|Q \xrightarrow{s} P'\|Q} \cdot (\text{Lpar}) \qquad \frac{P \xrightarrow{s} P' \qquad Q \xrightarrow{s'} Q'}{P|Q \xrightarrow{s \bullet s'} P'|Q'} (\text{Com})$$

(look as ordinary CCS rules)

Example I

$$P = \tau \backslash_a P_1 | (\nu b) Q$$
 and $Q = b \backslash_\tau P_2 | a \backslash_b$

$$\frac{\overline{} \stackrel{b}{}_{\backslash \tau} \cdot P_{2} \xrightarrow{\Box \setminus \Box \setminus b} \vee \tau}{P_{2}} P_{2} \xrightarrow{a \setminus b} \cdot \mathbf{0} \xrightarrow{\Box \setminus \Box \setminus b} \vee \mathbf{0}} \mathbf{0}$$

$$\frac{Q \xrightarrow{\Box \setminus \Box \setminus b} \vee \tau}{P_{1} \vee \Box \setminus \Box \vee D} P_{1} \xrightarrow{(\nu b)Q} \xrightarrow{\Box \setminus \Box \setminus \tau} (\nu b)(P_{2}|\mathbf{0})$$

$$P \xrightarrow{\tau \setminus \Box \setminus \tau} P_{1} |(\nu b)(P_{2}|\mathbf{0})$$

Bisimulation

The process algebra of linked interactions is a straightforward extension of CCS. It includes CCS as a sub-calculus.

Finer (bisimilarity over the) LTS wrt CCS: three kinds of meaningful observables

$$\tau \backslash a \qquad \qquad \tau \backslash a^{\Box} \backslash \Box^{b} \backslash \tau \qquad \qquad b \backslash \tau$$

Bisimulation

The process algebra of linked interactions is a straightforward extension of CCS. It includes CCS as a sub-calculus.

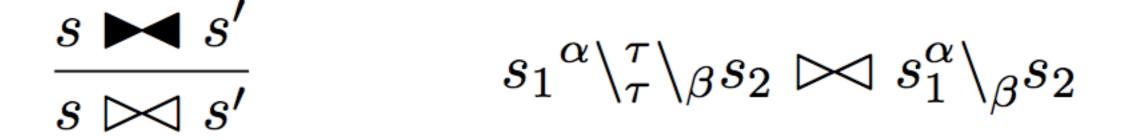
Finer (bisimilarity over the) LTS wrt CCS: three kinds of meaningful observables

Bisimulation

The process algebra of linked interactions is a straightforward extension of CCS. It includes CCS as a sub-calculus.

Finer (bisimilarity over the) LTS wrt CCS: three kinds of meaningful observables

White tie



To be used in the network bisimulation (the bisimulation of the link-calculus)

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if P \mathbf{R} Q then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if P \mathbf{R} Q then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if P \mathbf{R} Q then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if P \mathbf{R} Q then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if P \mathbf{R} Q then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

• if $Q \xrightarrow{s} Q'$, then $\exists s', P'$ such that $s' \bowtie s, P \xrightarrow{s'} P'$, and $P' \mathbf{R} Q'$.

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

 τa

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if P \mathbf{R} Q then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

• if $Q \xrightarrow{s} Q'$, then $\exists s', P'$ such that $s' \bowtie s, P \xrightarrow{s'} P'$, and $P' \mathbf{R} Q'$.

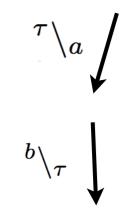
$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

 τa

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$



A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

$$\begin{array}{c} \tau \\ a \\ \downarrow \\ b \\ \tau \\ \downarrow \end{array}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

$$\begin{array}{c} \tau \\ a \\ b \\ \tau \end{array} \right)$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

$$\begin{array}{c} \tau \\ a \\ \end{array}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

$$\begin{array}{c} \tau \\ a \\ \end{array}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

$$\begin{array}{c} \tau \\ a \\ b \\ \tau \\ \end{array} \end{array}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

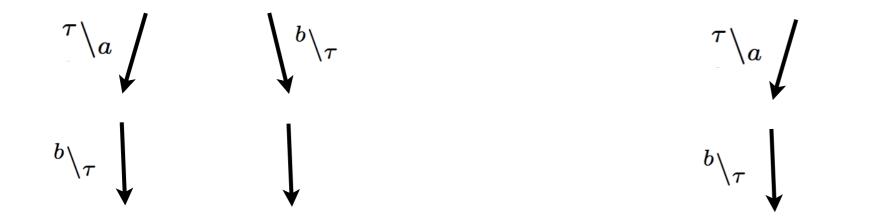
• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

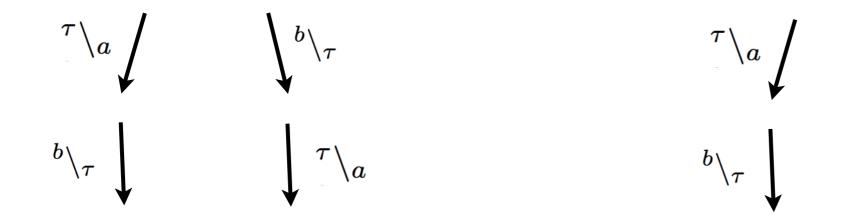
$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$



A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$



A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

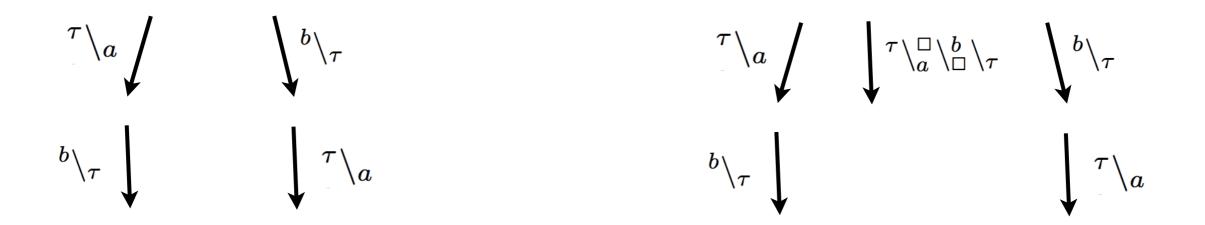
$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$



A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$

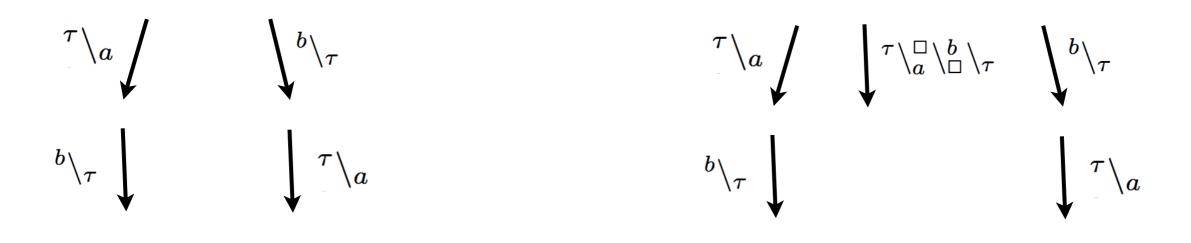


A network bisimulation \mathbf{R} is a binary relation over CNA processes such that, if $\mathbf{P} \mathbf{R} \mathbf{Q}$ then

• if $P \xrightarrow{s} P'$, then $\exists s', Q'$ such that $s' \bowtie s, Q \xrightarrow{s'} Q'$, and $P' \mathbf{R} Q'$;

• if $Q \xrightarrow{s} Q'$, then $\exists s', P'$ such that $s' \bowtie s, P \xrightarrow{s'} P'$, and $P' \mathbf{R} Q'$.

$$^{\tau} \setminus_{a} \cdot^{b} \setminus_{\tau} +^{b} \setminus_{\tau} \cdot^{\tau} \setminus_{a} \qquad \qquad ^{\tau} \setminus_{a} |^{b} \setminus_{\tau}$$



it is a congruence

Some references

- Chiara Bodei, Linda Brodo, Roberto Bruni:
 Open Multiparty Interaction. Workshop on Algebraic Development Techniques 2012: 1-23.
- Chiara Bodei, Linda Brodo, Roberto Bruni, Davide Chiarugi: A Flat Process Calculus for Nested Membrane Interactions. Sci. Ann. Comp. Sci. 24(1): 91-136 (2014).
- Chiara Bodei, Linda Brodo, Roberto Bruni: A Formal Approach to Open Multiparty Interactions. Submitted to Theoretical Computer Science.

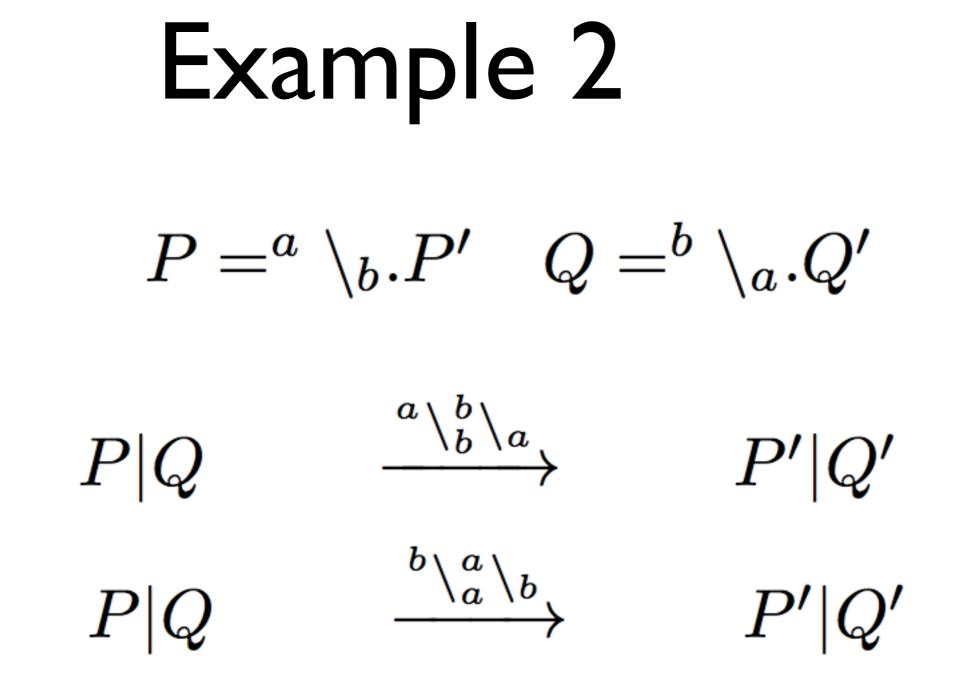
Roadmap

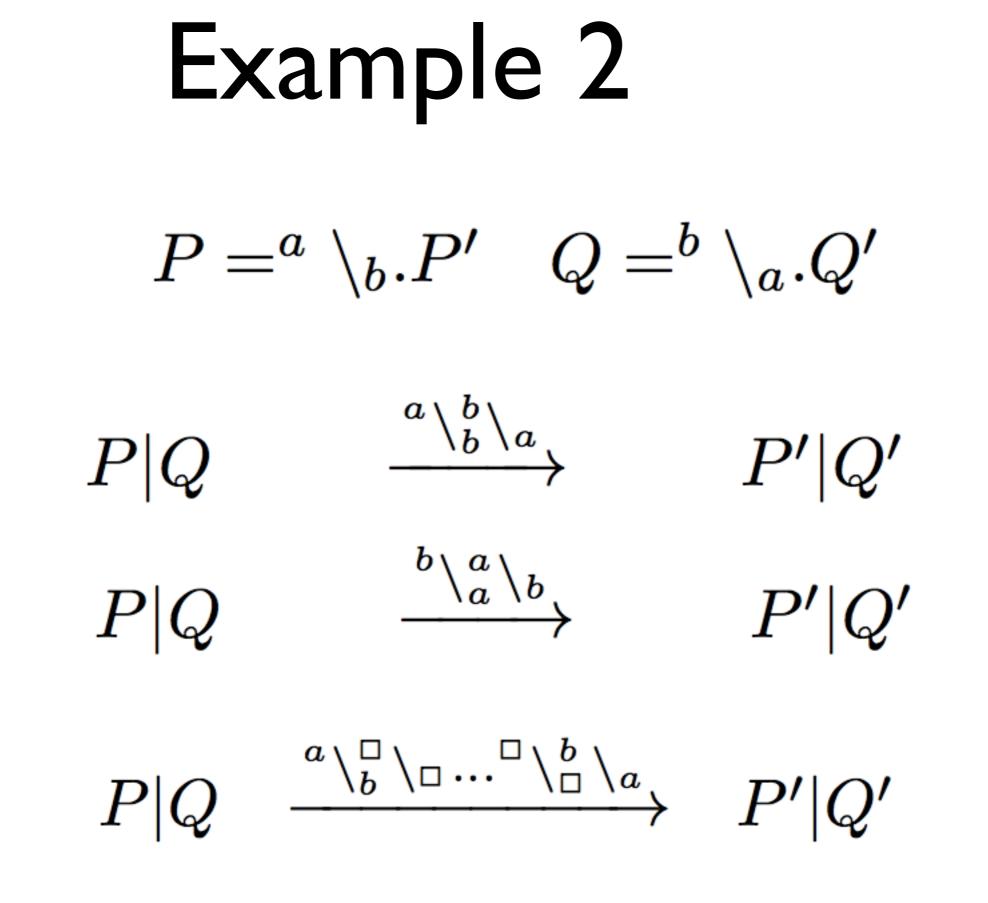
- A brief introduction to the link-calculus
- Symbolic link chains
- Definition of the symbolic semantics
- Definition of the symbolic bisimulation
- Conclusion and future work

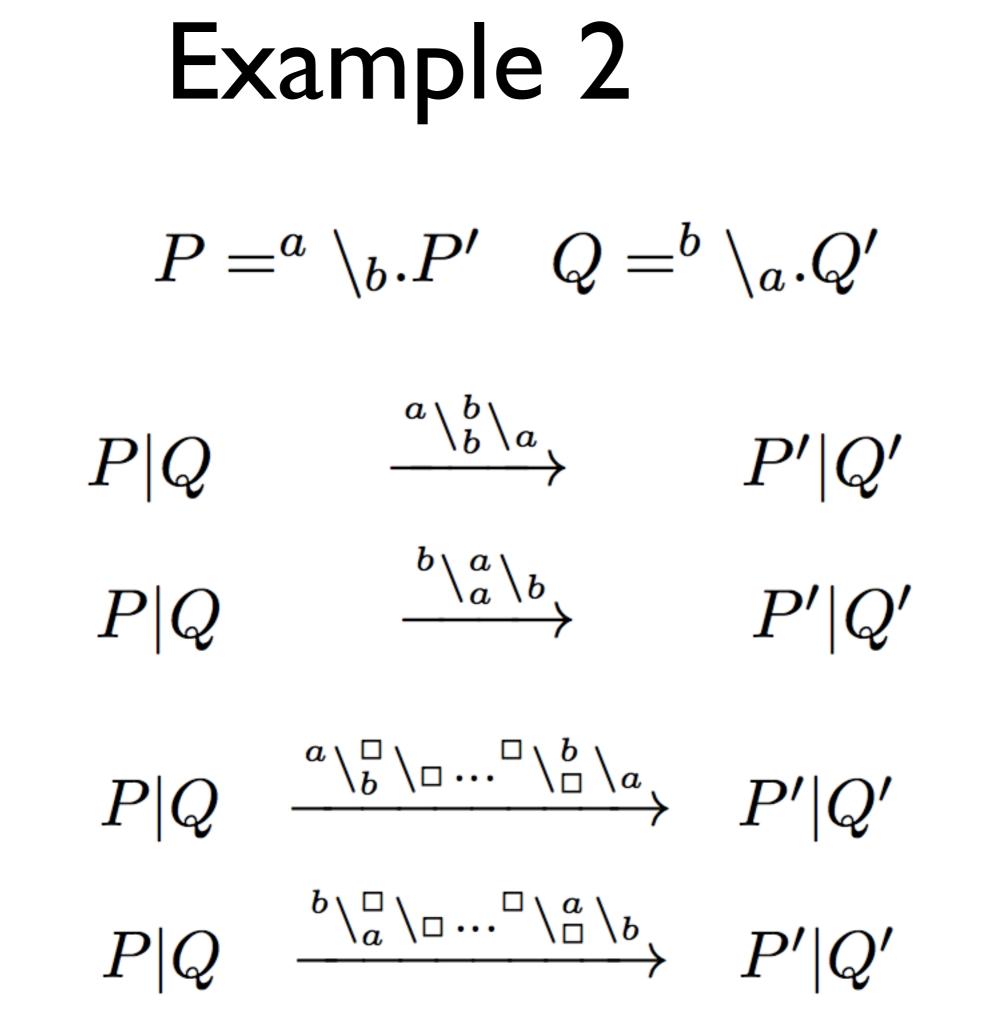
Example 2

 $P = {}^{a} \setminus_{b} P' \quad Q = {}^{b} \setminus_{a} Q'$

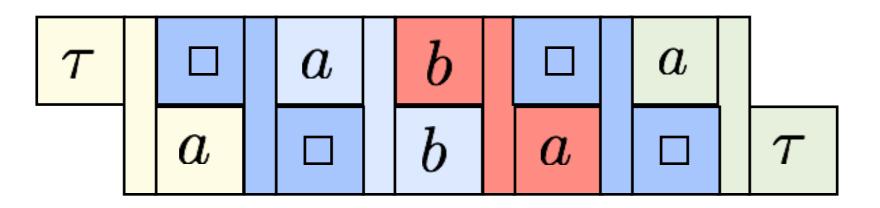
Example 2 $P = {}^{a} \setminus_{b} P' \quad Q = {}^{b} \setminus_{a} Q'$ $P|Q \qquad \xrightarrow{a \setminus b \setminus a}$ P'|Q'







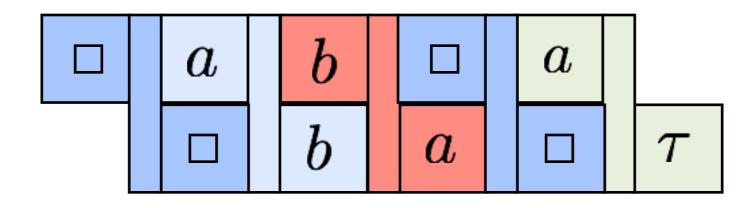
Symbolic configurations



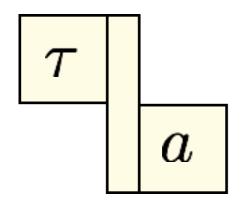
symbolic configuration

link chain

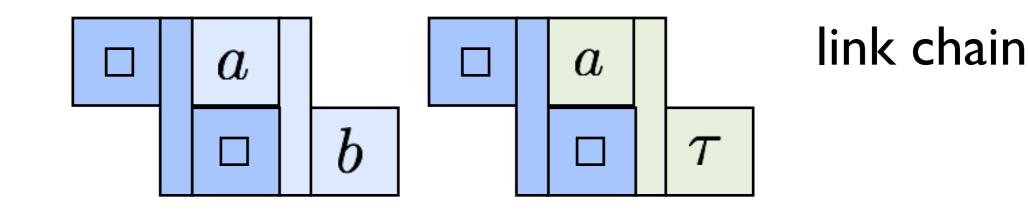
Symbolic configurations

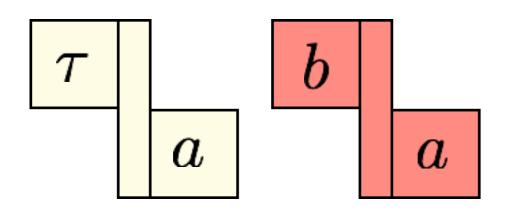


link chain

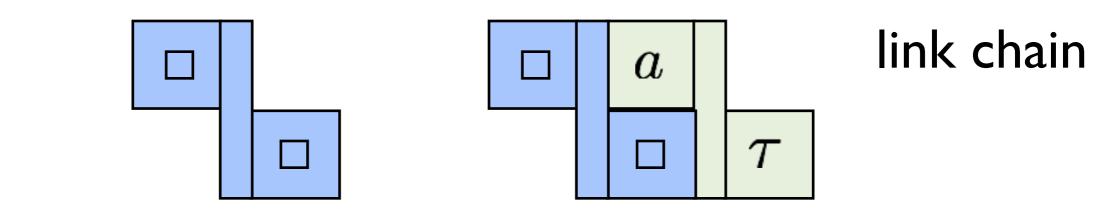


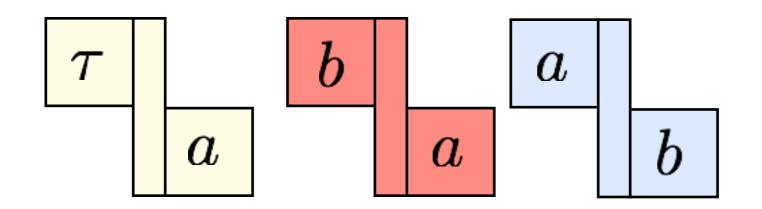
symbolic configuration



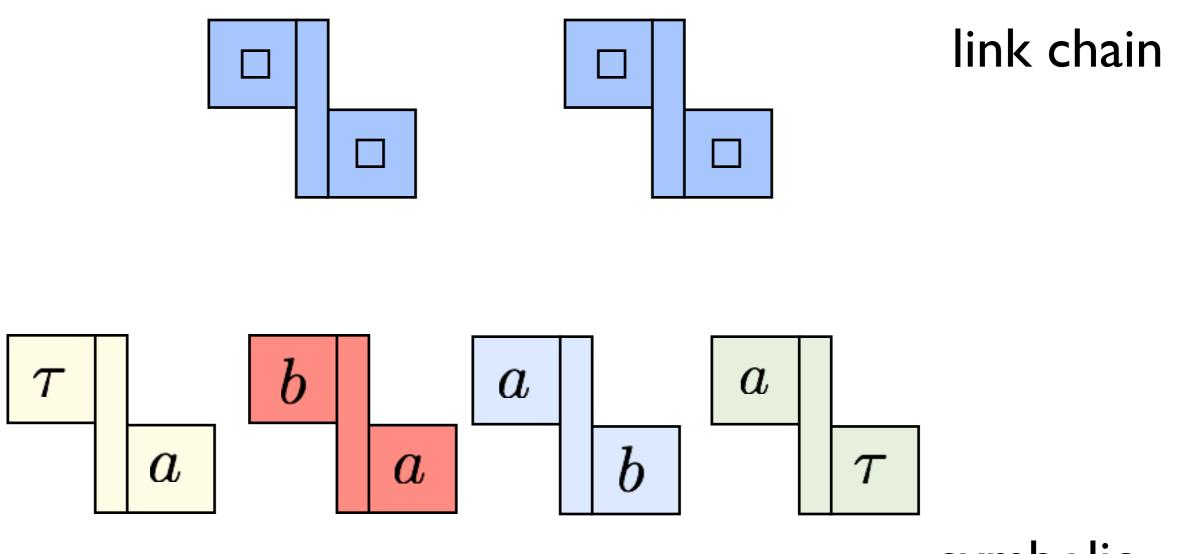


symbolic configuration

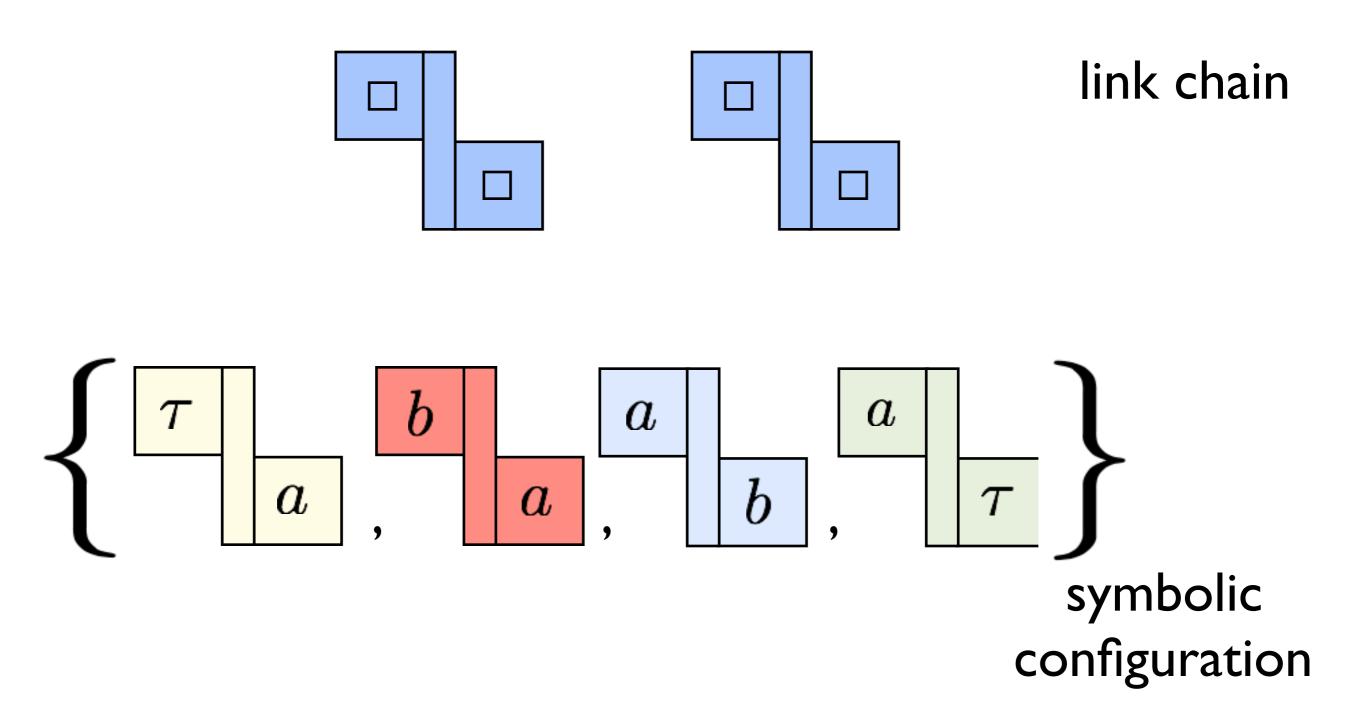




symbolic configuration



symbolic configuration



Let L be a multiset of solid links. We define the (symbolic) configuration <L> as the set

 $\langle L \rangle = \{ s \in VC \mid \text{ there exists } s_i \triangleright \mathsf{d}_i \text{ for all } l_i \in L \text{ s.t. } s = s_1 \bullet s_2 \bullet \cdots \bullet s_n \}$ We say that $\langle L \rangle$ is a valid configuration if the set above is not empty.

$$L = \{ {}^a ackslash {}_b, {}^ au ackslash {}_a, {}^ au ackslash {}_b \}$$
 not valid configuration

Let L be a multiset of solid links. We define the (symbolic) configuration <L> as the set

 $\langle L \rangle = \{ s \in VC \mid \text{ there exists } s_i \triangleright \mathsf{d}_i \text{ for all } l_i \in L \text{ s.t. } s = s_1 \bullet s_2 \bullet \cdots \bullet s_n \}$ We say that $\langle L \rangle$ is a valid configuration if the set above is not empty.

$$L = \{ {}^a \backslash_b, {}^ au \backslash_a, {}^ au \backslash_b \}$$
 not valid configuration

Proposition 1 (Valid Configurations). Let L be a non-empty multiset of solid links. Then, $\langle L \rangle$ is valid iff τ appears at most once in L as input and at most once as output.

Let L be a multiset of solid links. We define the (symbolic) configuration <L> as the set

 $\langle L \rangle = \{ s \in VC \mid \text{ there exists } s_i \triangleright \mathsf{d}_i \text{ for all } l_i \in L \text{ s.t. } s = s_1 \bullet s_2 \bullet \cdots \bullet s_n \}$ We say that $\langle L \rangle$ is a valid configuration if the set above is not empty.

$$L = \{ {}^a ackslash _b, {}^ au ackslash _a, {}^ au ackslash _b \}$$
 not valid configuration

Proposition 1 (Valid Configurations). Let L be a non-empty multiset of solid links. Then, $\langle L \rangle$ is valid iff τ appears at most once in L as input and at most once as output.

Restriction acting on configurations

Let γ be a configuration and $a \in C$. We define the configuration $(\nu a)\gamma = \{s \in VC \mid \text{ there exists } s' \in \gamma \text{ and } s = (\nu a)s'\}|$ We say that $(\nu a)\gamma$ is valid if the set above is not empty.

$$\begin{array}{l} L = \{^{a} \backslash_{a}\} & \text{not valid} \\ L = \{^{\tau} \backslash_{a}, ^{a} \backslash_{\tau}, ^{a} \backslash_{b}\} \text{ configurations} \end{array} \quad (\nu a) \langle L \rangle \end{array}$$

$$L = \left\{ {}^{\tau} \backslash_{a}, {}^{b} \backslash_{\tau}, {}^{a} \backslash_{c} \right\} \quad \text{this is valid} \quad (\nu a) \langle L \rangle$$

because of $\tau \backslash_{a}^{a} \backslash_{c}^{\Box} \backslash_{\Box}^{b} \backslash_{\tau}$

Properties of restricted valid configurations

Let $\gamma = (\nu \mathbf{x}) \langle L \rangle$ be a valid configuration and

 $a \in fn(\gamma)$. $(\nu a)\gamma$ is valid iff the three conditions below hold:

- 1. Matched: a occurs the same number of times as input and as output in γ .
- 2. Extremes: there exist two links $^{\alpha}\backslash_{\beta}, ^{\alpha'}\backslash_{\beta'}$ in γ where $\alpha, \beta' \neq a$.
- 3. Synchronizations: if both τa and $a \to ccur in L$, then either names $(L) = \{a, \tau\}$ or there exist two links $a \to \beta, \beta' \to a$ in L s.t. $\beta, \beta' \notin \{a, \tau\}$.

Merging valid configurations

Let $(\nu a_1, ..., a_n) \langle L \rangle$ and $(\nu b_1, ..., b_m) \langle L' \rangle$ be two valid config-

urations. By alpha conversion, we assume that the names $a_1, ..., a_n$ (resp. $b_1, ..., b_m$) do not occur in L' (resp. L). We define

 $(\nu a_1, \dots, a_n) \langle L \rangle \bullet (\nu b_1, \dots b_m) \langle L' \rangle = (\nu a_1, \dots, a_n, b_1, \dots, b_m) \langle L \uplus L' \rangle$

where \uplus denotes multiset union.

Roadmap

- A brief introduction to the link-calculus
- Symbolic link chains
- Definition of the symbolic semantics
- Definition of the symbolic bisimulation
- Conclusion and future work

Symbolic semantics rules

$$\frac{}{\ell \cdot P \xrightarrow{\langle \{\ell\} \rangle} P} Act_s$$

$$\begin{array}{ccc} P & \xrightarrow{\gamma} & P' \\ \hline (\nu a)P & \xrightarrow{(\nu a)\gamma} & (\nu a)P' \end{array} & Res_s \end{array} & \begin{array}{ccc} P & \xrightarrow{\gamma} & P' & Q & \xrightarrow{\gamma'} & Q' \\ \hline P & Q & \xrightarrow{(\nu a)\gamma} & P' & P' & Q' \end{array} & Com_s \end{array}$$

$$\frac{P \xrightarrow{\gamma} P'}{P+Q \xrightarrow{\gamma} P'} Lsum_s \qquad \frac{P \xrightarrow{\gamma} P'}{P \mid Q \xrightarrow{\gamma} P' \mid Q} Lpar_s \qquad \frac{P \xrightarrow{\gamma} P' \quad A \triangleq P}{A \xrightarrow{\gamma} P'} Ide_s$$

Symbolic semantics rules

$$\frac{}{\ell . P \xrightarrow{\langle \{\ell\} \rangle} P} Act_s$$

$$\frac{P \xrightarrow{\gamma} P'}{(\nu a)P \xrightarrow{(\nu a)\gamma} (\nu a)P'} Res_s \qquad \frac{P \xrightarrow{\gamma} P' \quad Q \xrightarrow{\gamma'} Q'}{P \mid Q \xrightarrow{\gamma'} P' \mid Q'} Com_s$$

$$\frac{P \xrightarrow{\gamma} P'}{P+Q \xrightarrow{\gamma} P'} Lsum_s \qquad \frac{P \xrightarrow{\gamma} P'}{P \mid Q \xrightarrow{\gamma} P' \mid Q} Lpar_s \qquad \frac{P \xrightarrow{\gamma} P' \quad A \triangleq P}{A \xrightarrow{\gamma} P'} Ide_s$$

Symbolic semantics rules

$$\frac{}{\ell . P \xrightarrow{\langle \{\ell\} \rangle} P} Act_s$$

$$\frac{P \xrightarrow{\gamma} P'}{(\nu a)P \xrightarrow{(\nu a)\gamma} (\nu a)P'} Res_s \qquad \frac{P \xrightarrow{\gamma} P' \quad Q \xrightarrow{\gamma'} Q'}{P \mid Q \xrightarrow{\gamma \bullet \gamma'} P' \mid Q'} Com_s$$

$$\frac{P \xrightarrow{\gamma} P'}{P+Q \xrightarrow{\gamma} P'} Lsum_s \qquad \frac{P \xrightarrow{\gamma} P'}{P \mid Q \xrightarrow{\gamma} P' \mid Q} Lpar_s \qquad \frac{P \xrightarrow{\gamma} P' \quad A \triangleq P}{A \xrightarrow{\gamma} P'} Ide_s$$

Soundness and Completeness

Let P be a process and assume that $P \xrightarrow{\gamma} P'$. Then, for all $s \in \gamma$, $P \xrightarrow{\overline{s}} P'$.

Let P be a process and assume that $P \xrightarrow{s} P'$. Then, there exists γ s.t. $P \xrightarrow{\gamma} P'$ and $s \in \gamma$.

where γ is a symbolic configuration, possibly restricted.

introducing the extraction operator ext(s)

 $s = {}^{\tau} \backslash {}^{a}_{a} \backslash {}^{c}_{c} \backslash {}^{b}_{b} \backslash {}_{\tau}$

introducing the extraction operator ext(s)

 $s = {}^{\tau} \backslash {}^a_a \backslash {}^c_c \backslash {}^b_b \backslash {}_{\tau}$

 $s' = (\nu \ a)(\nu \ b)^{\tau} \backslash_a^a \backslash_c^c \backslash_b^b \backslash_{\tau} = {}^{\tau} \backslash_{\tau}^{\tau} \backslash_c^c \backslash_{\tau}^{\tau} \backslash_{\tau}^{\tau}$

introducing the extraction operator ext(s)

 $s = {}^{\tau} \backslash {}^a_a \backslash {}^c_c \backslash {}^b_b \backslash {}_{\tau}$

 $s' = (\nu \ a)(\nu \ b)^{\tau} \backslash_a^a \backslash_c^c \backslash_b^b \backslash_{\tau} = {}^{\tau} \backslash_{\tau}^{\tau} \backslash_c^c \backslash_{\tau}^{\tau} \backslash_{\tau}^{\tau}$

 $ext(s') = (\nu \ x)\langle^{\tau} \backslash_{x}, x \backslash_{c}, c \backslash_{x}, x \backslash_{\tau}\rangle$

Let P be a process and assume that $P \xrightarrow{s} P'$. Then, there

exists
$$\gamma \subseteq \text{ext}(s)$$
 s.t. $P \implies P'$.

ext(...) is a super set ...

Let P be a process and assume that $P \xrightarrow{s} P'$. Then, there

exists
$$\gamma \subseteq ext(s)$$
 s.t. $P \implies P'$.

ext(...) is a super set ... $(\nu a)({}^{b}\backslash_{a}|^{a}\backslash_{b}) \mid (\nu c)({}^{d}\backslash_{c}|^{c}\backslash_{d}) \xrightarrow{s \bullet s'} \mathbf{0}$

$$exists \ \gamma \subseteq ext(s) \ s.t. \ P \xrightarrow{\gamma} P'.$$

$$ext(...) \ is \ a \ super \ set \ ...$$

$$(\nu a)(^b\backslash_a|^a\backslash_b) \ | \ (\nu c)(^d\backslash_c|^c\backslash_d) \xrightarrow{s \bullet s'} \mathbf{0}$$

$$w = s \bullet s' = ^d \setminus_{\tau}^{\tau} \setminus_{d}^{\Box} \setminus_{\tau}^{D} \setminus_{\tau}^{T} \setminus_b$$

$$exists \ \gamma \subseteq ext(s) \ s.t. \ P \xrightarrow{\gamma} P'.$$

$$ext(...) \ is \ a \ super \ set \ ...$$

$$(\nu a)(^b\backslash_a|^a\backslash_b) \mid (\nu c)(^d\backslash_c|^c\backslash_d) \xrightarrow{s \bullet s'} \mathbf{0}$$

$$w = s \bullet s' = ^d \setminus_{\tau}^{\tau} \setminus_d^{\Box} \setminus_{\Box}^{b} \setminus_{\tau}^{\tau} \setminus_b$$

$$(\nu a)(^b\backslash_a|^a\backslash_b) \mid (\nu c)(^d\backslash_c|^c\backslash_d) \xrightarrow{\gamma \bullet \gamma'} \mathbf{0}$$

$$exists \ \gamma \subseteq ext(s) \ s.t. \ P \implies \gamma \to P'.$$

$$ext(...) \ is \ a \ super \ set \ ...$$

$$(\nu a)(^b\backslash_a|^a\backslash_b) \mid (\nu c)(^d\backslash_c|^c\backslash_d) \xrightarrow{s \bullet s'} \mathbf{0}$$

$$w = s \bullet s' =^d \setminus_{\tau}^{\tau} \setminus_d^{\Box} \setminus_{\Box}^{b} \setminus_{\tau}^{\tau} \setminus_b$$

$$(\nu a)(^b\backslash_a|^a\backslash_b) \mid (\nu c)(^d\backslash_c|^c\backslash_d) \xrightarrow{\gamma \bullet \gamma'} \mathbf{0}$$

$$\psi = \gamma \bullet \gamma' = (\nu \ a, c)\langle b\backslash_a, a\backslash_b, d\backslash_c, c\backslash_d \rangle$$

$$exists \ \gamma \subseteq ext(s) \ s.t. \ P \implies P'.$$

$$ext(...) \ is \ a \ super \ set \ ...$$

$$(\nu a)(^{b}\backslash_{a}|^{a}\backslash_{b}) \mid (\nu c)(^{d}\backslash_{c}|^{c}\backslash_{d}) \xrightarrow{s \bullet s'} \mathbf{0}$$

$$w = s \bullet s' =^{d} \backslash_{\tau}^{\tau} \backslash_{d}^{\Box} \backslash_{\Box}^{\tau} \backslash_{\tau}^{T} \backslash_{b}$$

$$(\nu a)(^{b}\backslash_{a}|^{a}\backslash_{b}) \mid (\nu c)(^{d}\backslash_{c}|^{c}\backslash_{d}) \xrightarrow{\gamma \bullet \gamma'} \mathbf{0}$$

$$\psi = \gamma \bullet \gamma' = (\nu \ a, c)\langle^{b}\backslash_{a}, ^{a}\backslash_{b}, ^{d}\backslash_{c}, ^{c}\backslash_{d}\rangle$$

$$ext(w) = (\nu x)\langle^{b}\backslash_{x}, ^{x}\backslash_{b}, ^{d}\backslash_{x}, ^{x}\backslash_{d}\rangle$$

$$exists \ \gamma \subseteq ext(s) \ s.t. \ P \implies P'.$$

$$ext(...) \ is \ a \ super \ set \ ...$$

$$(\nu a)(^b\backslash_a|^a\backslash_b) \mid (\nu c)(^d\backslash_c|^c\backslash_d) \implies \bullet \bullet s \bullet s' = ^d \setminus_{\tau}^{\tau} \setminus_d^{\Box} \setminus_{\tau}^b \setminus_{\tau}^{\tau} \setminus_b^{\tau}$$

$$(\nu a)(^b\backslash_a|^a\backslash_b) \mid (\nu c)(^d\backslash_c|^c\backslash_d) \implies \bullet \bullet \bullet s' = ^d \setminus_{\tau}^{\tau} \setminus_d^{\Box} \setminus_{\tau}^b \setminus_{\tau}^{\tau} \setminus_b^{\tau}$$

$$\psi = \gamma \bullet \gamma' = (\nu \ a, c)\langle b\backslash_a, a\backslash_b, d\backslash_c, c'\backslash_d \rangle$$

$$ext(w) = (\nu x)\langle b\backslash_x, x\backslash_b, d\backslash_x, x'\backslash_d \rangle$$

$$w' = ^b \setminus_{\tau}^{\tau} \setminus_d^d \setminus_{\tau}^{\tau}\backslash_b \in ext(w) \quad w' \notin \psi$$

Roadmap

- A brief introduction to the link-calculus
- Symbolic link chains
- Definition of the symbolic semantics
- Definition of the symbolic bisimulation
- Conclusion and future work

Bisimulation

recall

A network bisimulation **R** is a binary relation over link processes such that, if P **R** Q then:

- if $P \xrightarrow{s} P'$ then $\exists s', Q'$ such that $s \bowtie s', Q \xrightarrow{s'} Q'$ and $P'\mathbf{R}Q'$
- and viceversa

We let \sim_n denote the largest network bisimulation and we say that P is network bisimilar to Q if $P \sim_n Q$.

then, we introduce

Let $\triangleright \triangleleft$ *be the least symmetric relation on valid configurations s.t.* $\gamma \triangleright \triangleleft \gamma'$

iff for all $s \in \gamma$ *there exists* $s' \in \gamma' s.t. s' \bowtie s.$

Symbolic bisimulation

A symbolic network bisimulation \mathbf{R} is a binary relation over link processes such that, if $P\mathbf{R}Q$ then:

- If
$$P \xrightarrow{\gamma} P'$$
, then, there exists $\gamma' \bowtie \gamma$ s.t. $Q \xrightarrow{\gamma'} Q'$ and $P'\mathbf{R}Q'$.

- If
$$Q \xrightarrow{\gamma} Q'$$
, then, there exists $\gamma' \bowtie \gamma$ s.t. $P \xrightarrow{\gamma'} P'$ and $Q' \mathbf{R} P'$.

We let \sim_s be the largest symbolic network bisimulation and we say that P and Q are bisimilar if $P \sim_s Q$.

Symbolic bisimulation 2

we introduce the concept of capability...

given $\gamma = (\nu x) \langle L \rangle$ we say that $[a \cdot b] \in cap(\gamma)$

 $if^a \setminus_b \in L$

or it is possible to create a link chain as the following

$$x_1^{x_1} \setminus x_2 \cdots x_{n-1} \setminus x_n^{x_n} \setminus b$$
 where $x_1, ..., x_n \in \mathbf{x}_n$

Symbolic bisimulation 3

Let $s \in \gamma$. For all solid link $a \setminus b$, $a \setminus b$ appears in siff $[a \cdot b] \in cap(\gamma)$

Moreover, let γ , γ' *be valid configurations.*

Then, $\gamma \triangleright \triangleleft \gamma' iff cap(\gamma) = cap(\gamma')$

Therefore, checking $\gamma \triangleright \triangleleft \gamma'$ can be done in polynomial time

Symbolic bisimulation, last

Let P and Q be processes. Then, $P \sim_n Q$ iff $P \sim_s Q$.

 \sim_s is a congruence.

The tool

- We have implemented the symbolic semantics in Maude (<u>http://</u><u>maude.cs.illinois.edu</u>)
- it is available at <u>http://subsell.logic.at/links</u>

Conclusions

A symbolic semantics and bisimulation for an open and multiparty interaction process calculus

An efficient procedures to check the validity of a symbolic configuration

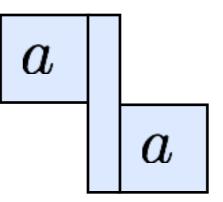
Our semantics is adequate wrt the operational semantics

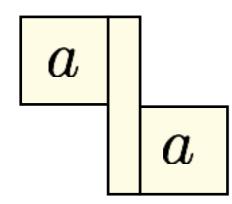
Future work

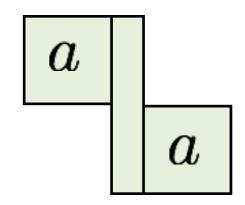
- Implementing a procedure to check (symbolic) bisimulation in the link-calculus.
- Use the extraction procedure (ext(s)), that over approximates the semantics, as basis for abstract debugging and analysis of link-calculus specifications
- Symbolic semantics for the link-calculus with data

Thanks for the attention!

Examples: CSP







Examples: CSP

a	a	a	
	a	a	a

The dining philosophers

 $\begin{array}{lll} Phil_{i} & \triangleq \tau \setminus_{think_{i}} .Phil_{i} & +^{up_{i}} \setminus_{up_{(i+1)modn}} .PhilEat_{i} \\ PhilEat_{i} & \triangleq \tau \setminus_{eat_{i}} .^{dw_{i}} \setminus_{dw_{(i+1)modn}} .Phil_{i} \\ Fork_{i} & \triangleq \tau \setminus_{up_{i}} .^{\tau} \setminus_{dw_{i}} .Fork_{i} & +^{up_{i}} \setminus_{\tau} .^{dw_{i}} \setminus_{\tau} .Fork_{i} \end{array}$

We do not have the deadlock problem anymore, we can focus on ... starvation.