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Let’s begin

(but feel free to interrupt)



Setting

Modelling concurrent communicating systems

Process calculi approach

(some basic knowledge of CCS and pi assumed,
some details omitted)



Interaction

An interaction is an action by which 
(communicating) processes 
can influence each other



Milner’s CCS interaction

a.P a.Q
action prefix

(input?)

co-action prefix
(output?)

|

P |Q
a • a = � silent action



Milner’s pi interaction

|
⌧

ax.P

a(y).Q

P | Q[x/y]



Any better abstraction?
Internet
Biology

Social networks
Autonomic systems

...

I/O is the basic form of interaction
but “one size won’t fit all” 

(it is possibly misleading to think otherwise:
not all interactions are mutual/reciprocal)



Would you...?

Open multiparty interactions are like playing piano
(either bad or good, it does not matter)

...model piano playing using dyadic interaction



Vision

Interaction is like a puzzle:

it requires different pieces to fit together



Bold claim #1
Mutual (I/O-like) interaction is like a kid’s puzzle



Multiparty interaction
An interaction is multiparty when
it involves two or more processes



Open interaction
An interaction is open when

the number of involved processes is not fixed



Our aim

Extend the theory of dyadic interactions
as little as possible
as well as possible

to deal with open multiparty interaction



Motivating example

How to encode Cardelli&Gordon’s mobile ambients
(in ordinary process calculi)?

CCS/CSP: 
immutable connectivity

pi: 
channel mobility

HOpi: 
flat process mobility

mobile ambients:
mobility of nested processes

(barrier crossing)



Process algebra ops
0 nil

µ.P action prefix
P +Q sum
P |Q parallel
(�a)P restriction

!P replication

X process variable
rec X.P recursive process

P [⇥] renaming



Named, mobile, active, 
hierarchical ambients

An ambient is a place where computation happens
An ambient defines some sort of boundary

An ambient has a name
An ambient has a collection of local processes
An ambient has a collection of sub-ambients

Ambients are subject to capabilities:
Ambients can move in/out of other ambients

Ambients can dissolve



(Pure) Ambient calculus
P ::= 0 nil

m[P ] ambient
M.P exercise a capability
P |Q parallel
(�a)P restriction

!P replication

M ::= in m entry capability
out m exit capability

open m open capability

n

m

P Q



Ambient calculus: 
semanticsC. Bodei, L. Brodo, and R. Bruni 3

P⇤ P Q⇤ P⌅ P⇤ Q P⇤ Q,Q⇤ R⌅ P⇤ R
P | 0⇤ P P | Q⇤ Q | P (P | Q) | R⇤ P | (Q | R)
(⇧ n)0⇤ 0 (⇧ n)(⇧ m)P⇤ (⇧ m)(⇧ n)P P⇤ Q⌅ P|R⇤ Q|R

(⇧ n)(P | Q)⇤ P | (⇧ n)Q, if n ⌃⇧ fn(P) P⇤ Q⌅ (⇧ n)P⇤ (⇧ n)Q
!P⇤ P | !P (⇧ n)(m[P ])⇤ m[ (⇧ n)P ], if n ⌃= m P⇤ Q⌅ n[P ]⇤ n[Q ]

Table 1: Structural congruence rules for the Mobile Ambients.

3 A Core Network Algebra

3.1 Link Chains

Let C be the set of channels, ranged over by a,b,c, .... Let E � C  {⌃,⇥} be the set of actions, ranged
over by �,⇥ ,⌅, .... The symbol ⌃ denotes a silent action. The symbol ⇥ denotes a non-specified action.

A link is a pair p = �\⇥ ; it can be read as forwarding the input available on � to ⇥ , and we call �
the source end of p and ⇥ the target end of p.

A link is valid if either � = ⇥ = ⇥ or �,⇥ ⌃= ⇥. The link ⇥\⇥ is called virtual, otherwise it is called
solid. We let L be the set of valid links, ranged over by p,q,r, ....

Example 1. The input action a (resp. the output action a) of CCS can be seen as the link a\⌃ (resp. ⌃\a).

Example 2. The action a of CSP can be seen as the link a\a.

A link chain is a finite sequence s = p1...pn of (valid) links pi = �i\⇥i such that:

1. for any i ⇧ [1,n�1], ⇥i,�i+1 ⇧ C implies ⇥i = �i+1;

2. for any i ⇧ [1,n�1], ⇥i = ⌃ iff �i+1 = ⌃;

3. if ⌥i ⇧ [1,n].�i,⇥i ⌃⇧ C , then ⌥i ⇧ [1,n].�i = ⇥i = ⌃ .

Note that we disallow chains made of virtual links only. A link chain is solid if all its links are so.
In the following we call a link chain simple if it includes exactly one solid link (and one, none or

many virtual links). For ⇤ a solid link and s a simple sequence, we write ⇤ ⇧ s if ⇤ is the only solid link
appearing in s. The empty link chain is denoted ⇤ .

Example 3. The sequence ⌃\a
a\⌃ is a solid link chain that can be read as a CCS-like communication

between an output on a and an input on a.

Example 4. The sequence a\a
a\a

a\a is a solid link chain that can be read as a CSP-like communication
between three peers issuing the action a.

In the following we define some basic operations over links and link chains. We remark that all
operations we consider are partial but strict, i.e., they may issue � (undefined) and the result is � if one
of the arguments is �.

Merge. Two link-chains can be merged if they are to some extent “complementary”, i.e. if they have
the same length, each provides links that are not specified in the other and together they form a (valid)

Structural congruence
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2 LTS for Mobile Ambients

(In)
n[ inm.P |Q ] |m[R ]⇥ m[n[P |Q ] |R ]

(Out)
m[n[outm.P |Q ] |R ]⇥ n[P |Q ] |m[R ]

(Open)
openn.P |n[Q ]⇥ P |Q

P⇥ Q
(Res)

(� n)P⇥ (� n)Q
P⇥ Q

(Amb)
n[P ]⇥ n[Q ]

P⇥ Q
(Par)

P |R⇥ Q |R
P⇤ � P P⇥ Q Q� Q⇤

(Cong)
P⇤ ⇥ Q⇤

Figure 1: Semantics rules for the Mobile Ambients

Structure of the paper. In 2 we recall the basic of mobile ambients. In 3 we introduce a core network
algebra. In 5 we define the encoding from mobile ambients to a slightly enhanced version of the network
algebra with name passing. In 6 we state some final remarks and outline some promising direction of
future work.

2 Background on Mobile Ambients

We briefly recall the syntax and the semantics of the pure Mobile Ambients (MA for short) [], i.e. the
version without communication primitives and variables.

Let n range over the numerable set of names N . The set of mobile ambient processes PMA (with
metavariable P) and the set of capabilities C ap (with metavariable M) are defined below:

P ::= 0 | M.P | (� n)P | P|P⇤ | n[P ] | !P
M ::= inn | outn | openn

Intuitively, the nil process 0 does nothing. The process M.P executes the capability M and then
behaves as P; (� n)P defines P to be the scope of the private name n; P | Q may alternatively behaves as
P or as Q and the two subprocesses may also interact; the replication operator; n[P ] denotes the ambient
n containing process P, and !P denotes that P is persistently replicated.

The capability inn allows an ambient to enter ambient named n; the capability outn allows an ambi-
ent to exit ambient n; the capability openn dissolves the ambient n.

The only binder is (� n) and the sets of free names and of bound names of a process P are defined
in the obvious way and denoted, respectively, by fn(P) and bn(P). Processes are taken up to alpha-
conversion of restricted names, i.e., (� n)P denotes the same process as (� m)P[n ⌃⇥ m] whenever m ⇧⌅
fn(P).

The semantics of the Mobile Ambients is given by the reduction rules in Fig. 1, modulo the structural
congruence rules in Table 1.

Reduction semantics
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A challenge for the 
audience

Why is it difficult to encode ambients into pi?
(How would you proceed?)

Personal guess:
it is just because ambient-like interaction 

is inherently non-dyadic!



Ambients as graphs

n

Location
where n lives

Location where the
content of n lives

Ambient n



(In), again

n

in m.P Q R

m

P

n

Q R

m

three-party interaction
(at least)



(Out), again

n

Q

R

m

P

n

Q

R

m

three-party interaction
(at least)

out m.P



(Open), again

n

looks like a two-party interaction, but it is not!
It is open! (accident of fate):

many processes (Q) change location at once

open n.P

Q

P

Q



(Open), yet another

n

ok, now it is a two-party interaction
But (In) and (Out) become open!

they must involve as many fwd-ers as needed 

open n.P

Q

P

Q

dummy
forwarder



Some consequences

Proposed encoding are either quite involved
or centralized (unnecessary bottle-necks)

LTS semantics for ambients are ad-hoc
(to say the least)

and based on HO labels
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(Recall our aim)

Extend the theory of dyadic interactions
as little as possible
as well as possible

to deal with open multiparty interaction

and to encode mobile ambients



Guidelines

Keep the syntax simple
Do not move the complexity to SOS rules

All we need is just a proper synchronization algebra



Linked interaction
We regard an interaction as a chain of links

(still a kid’s puzzle after all) 



Process algebra ops
0 nil

µ.P action prefix
P +Q sum
P |Q parallel
(�a)P restriction

!P replication

X process variable
rec X.P recursive process

P [⇥] renaming

We take as action
the offering of a link



Notation

silent interaction�

� any interaction (only in labels)

a interaction over a



Link

From α to β

�
�

�\⇥
Valid:
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P⇤ P Q⇤ P⌅ P⇤ Q P⇤ Q,Q⇤ R⌅ P⇤ R
P | 0⇤ P P | Q⇤ Q | P (P | Q) | R⇤ P | (Q | R)
(⇧ n)0⇤ 0 (⇧ n)(⇧ m)P⇤ (⇧ m)(⇧ n)P P⇤ Q⌅ P|R⇤ Q|R

(⇧ n)(P | Q)⇤ P | (⇧ n)Q, if n ⌃⇧ fn(P) P⇤ Q⌅ (⇧ n)P⇤ (⇧ n)Q
!P⇤ P | !P (⇧ n)(m[P ])⇤ m[ (⇧ n)P ], if n ⌃= m P⇤ Q⌅ n[P ]⇤ n[Q ]

Table 1: Structural congruence rules for the Mobile Ambients.

3 A Core Network Algebra

3.1 Link Chains

Let C be the set of channels, ranged over by a,b,c, .... Let E � C  {⌃,⇥} be the set of actions, ranged
over by �,⇥ ,⌅, .... The symbol ⌃ denotes a silent action. The symbol ⇥ denotes a non-specified action.

A link is a pair p = �\⇥ ; it can be read as forwarding the input available on � to ⇥ , and we call �
the source end of p and ⇥ the target end of p.

A link is valid if either � = ⇥ = ⇥ or �,⇥ ⌃= ⇥. The link ⇥\⇥ is called virtual, otherwise it is called
solid. We let L be the set of valid links, ranged over by p,q,r, ....

Example 1. The input action a (resp. the output action a) of CCS can be seen as the link a\⌃ (resp. ⌃\a).

Example 2. The action a of CSP can be seen as the link a\a.

A link chain is a finite sequence s = p1...pn of (valid) links pi = �i\⇥i such that:

1. for any i ⇧ [1,n�1], ⇥i,�i+1 ⇧ C implies ⇥i = �i+1;

2. for any i ⇧ [1,n�1], ⇥i = ⌃ iff �i+1 = ⌃;

3. if ⌥i ⇧ [1,n].�i,⇥i ⌃⇧ C , then ⌥i ⇧ [1,n].�i = ⇥i = ⌃ .

Note that we disallow chains made of virtual links only. A link chain is solid if all its links are so.
In the following we call a link chain simple if it includes exactly one solid link (and one, none or

many virtual links). For ⇤ a solid link and s a simple sequence, we write ⇤ ⇧ s if ⇤ is the only solid link
appearing in s. The empty link chain is denoted ⇤ .

Example 3. The sequence ⌃\a
a\⌃ is a solid link chain that can be read as a CCS-like communication

between an output on a and an input on a.

Example 4. The sequence a\a
a\a

a\a is a solid link chain that can be read as a CSP-like communication
between three peers issuing the action a.

In the following we define some basic operations over links and link chains. We remark that all
operations we consider are partial but strict, i.e., they may issue � (undefined) and the result is � if one
of the arguments is �.

Merge. Two link-chains can be merged if they are to some extent “complementary”, i.e. if they have
the same length, each provides links that are not specified in the other and together they form a (valid)

Virtual if
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!P⇤ P | !P (⇧ n)(m[P ])⇤ m[ (⇧ n)P ], if n ⌃= m P⇤ Q⌅ n[P ]⇤ n[Q ]
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3 A Core Network Algebra

3.1 Link Chains

Let C be the set of channels, ranged over by a,b,c, .... Let E � C  {⌃,⇥} be the set of actions, ranged
over by �,⇥ ,⌅, .... The symbol ⌃ denotes a silent action. The symbol ⇥ denotes a non-specified action.

A link is a pair p = �\⇥ ; it can be read as forwarding the input available on � to ⇥ , and we call �
the source end of p and ⇥ the target end of p.

A link is valid if either � = ⇥ = ⇥ or �,⇥ ⌃= ⇥. The link ⇥\⇥ is called virtual, otherwise it is called
solid. We let L be the set of valid links, ranged over by p,q,r, ....

Example 1. The input action a (resp. the output action a) of CCS can be seen as the link a\⌃ (resp. ⌃\a).

Example 2. The action a of CSP can be seen as the link a\a.

A link chain is a finite sequence s = p1...pn of (valid) links pi = �i\⇥i such that:

1. for any i ⇧ [1,n�1], ⇥i,�i+1 ⇧ C implies ⇥i = �i+1;

2. for any i ⇧ [1,n�1], ⇥i = ⌃ iff �i+1 = ⌃;

3. if ⌥i ⇧ [1,n].�i,⇥i ⌃⇧ C , then ⌥i ⇧ [1,n].�i = ⇥i = ⌃ .

Note that we disallow chains made of virtual links only. A link chain is solid if all its links are so.
In the following we call a link chain simple if it includes exactly one solid link (and one, none or

many virtual links). For ⇤ a solid link and s a simple sequence, we write ⇤ ⇧ s if ⇤ is the only solid link
appearing in s. The empty link chain is denoted ⇤ .

Example 3. The sequence ⌃\a
a\⌃ is a solid link chain that can be read as a CCS-like communication

between an output on a and an input on a.

Example 4. The sequence a\a
a\a

a\a is a solid link chain that can be read as a CSP-like communication
between three peers issuing the action a.

In the following we define some basic operations over links and link chains. We remark that all
operations we consider are partial but strict, i.e., they may issue � (undefined) and the result is � if one
of the arguments is �.

Merge. Two link-chains can be merged if they are to some extent “complementary”, i.e. if they have
the same length, each provides links that are not specified in the other and together they form a (valid)

Solid (otherwise)
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Link chain

such that:

�1\⇥1
�2\⇥2 ... �n\⇥n

⇥i,�i+1 ⇤⇥ {⇤, �} implies ⇥i = �i+1

⇥i = ⇤ i� �i+1 = ⇤

⇤i.�i,⇥i ⇥ {⇤, �} implies ⇤i.�i = ⇥i = ⇤



Link chain: terminology

Solid:
if all its links are so

�1\⇥1
�2\⇥2 ... �n\⇥n

Simple:
if it contains exactly one solid link

� � s :
s is simple and � is the only solid link in s
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P⇤ P Q⇤ P⌅ P⇤ Q P⇤ Q,Q⇤ R⌅ P⇤ R
P | 0⇤ P P | Q⇤ Q | P (P | Q) | R⇤ P | (Q | R)
(⇧ n)0⇤ 0 (⇧ n)(⇧ m)P⇤ (⇧ m)(⇧ n)P P⇤ Q⌅ P|R⇤ Q|R

(⇧ n)(P | Q)⇤ P | (⇧ n)Q, if n ⌃⇧ fn(P) P⇤ Q⌅ (⇧ n)P⇤ (⇧ n)Q
!P⇤ P | !P (⇧ n)(m[P ])⇤ m[ (⇧ n)P ], if n ⌃= m P⇤ Q⌅ n[P ]⇤ n[Q ]

Table 1: Structural congruence rules for the Mobile Ambients.

3 A Core Network Algebra

3.1 Link Chains

Let C be the set of channels, ranged over by a,b,c, .... Let E � C  {⌃,⇥} be the set of actions, ranged
over by �,⇥ ,⌅, .... The symbol ⌃ denotes a silent action. The symbol ⇥ denotes a non-specified action.

A link is a pair p = �\⇥ ; it can be read as forwarding the input available on � to ⇥ , and we call �
the source end of p and ⇥ the target end of p.

A link is valid if either � = ⇥ = ⇥ or �,⇥ ⌃= ⇥. The link ⇥\⇥ is called virtual, otherwise it is called
solid. We let L be the set of valid links, ranged over by p,q,r, ....

Example 1. The input action a (resp. the output action a) of CCS can be seen as the link a\⌃ (resp. ⌃\a).

Example 2. The action a of CSP can be seen as the link a\a.

A link chain is a finite sequence s = p1...pn of (valid) links pi = �i\⇥i such that:

1. for any i ⇧ [1,n�1], ⇥i,�i+1 ⇧ C implies ⇥i = �i+1;

2. for any i ⇧ [1,n�1], ⇥i = ⌃ iff �i+1 = ⌃;

3. if ⌥i ⇧ [1,n].�i,⇥i ⌃⇧ C , then ⌥i ⇧ [1,n].�i = ⇥i = ⌃ .

Note that we disallow chains made of virtual links only. A link chain is solid if all its links are so.
In the following we call a link chain simple if it includes exactly one solid link (and one, none or

many virtual links). For ⇤ a solid link and s a simple sequence, we write ⇤ ⇧ s if ⇤ is the only solid link
appearing in s. The empty link chain is denoted ⇤ .

Example 3. The sequence ⌃\a
a\⌃ is a solid link chain that can be read as a CCS-like communication

between an output on a and an input on a.

Example 4. The sequence a\a
a\a

a\a is a solid link chain that can be read as a CSP-like communication
between three peers issuing the action a.

In the following we define some basic operations over links and link chains. We remark that all
operations we consider are partial but strict, i.e., they may issue � (undefined) and the result is � if one
of the arguments is �.

Merge. Two link-chains can be merged if they are to some extent “complementary”, i.e. if they have
the same length, each provides links that are not specified in the other and together they form a (valid)

Virtual links 
can be read as missing pieces of the puzzle
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Merge
(All the ops we show are strict)

The definition extends to chains element-wise
(the result is undefined if the outcome is not valid)
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link chain. Formally, for s = p1...pn and s⇤ = p⇤1...p
⇤
n, with pi = �i\⇥i and p⇤i =

� ⇤
i \⇥ ⇤

i
for any i ⌅ [1,n], we

define s • s⇤ by letting:

� • ⇥ ,

⇥
⌅

⇤

� if ⇥ = ⇥
⇥ if � = ⇥
⌥ otherwise

�\⇥ • � ⇤\⇥ ⇤ ,
�

(� •� ⇤)\(⇥ •⇥ ⇤) if � • � ⇤,⇥ • ⇥ ⇤ ⇧=⌥
⌥ otherwise

s • s⇤ ,
�

(p1 • p⇤1)...(pn • p⇤n) if ⌃i ⌅ [1,n].pi • p⇤i ⇧=⌥� (p1 • p⇤1)...(pn • p⇤n) is a link chain
⌥ otherwise

Roughly, the merge is defined element-wise on the actions of a link chain, by ensuring that whenever
two actions are merged, (at least) one of them is ⇥ and that the result of the merge is still a link chain.
Example 5. Let s1 = ⌅\a

⇥\⇥⇥\⇥, s2 = ⇥\⇥a\b
⇥\⇥, and s3 = ⇥\⇥⇥\⇥b\⌅ . Then s = s1 • s2 = ⌅\a

a\b
⇥\⇥ and

s • s3 = ⌅\a
a\b

b\⌅ .
Lemma 1. The merge of link chains is a commutative and associative operation.
Lemma 2. If s is solid, then for any s⇤ we have s • s⇤ =⌥.

Restriction. Certain actions of the link chain can be made invisible by restricting the channel where
they take place. Of course, restriction is possible only if no broken link is created by this process, i.e.
only matched communication pairs can be restricted. Formally, for s = p1...pn, with pi = �i\⇥i for any
i ⌅ [1,n], we define we define the restriction operation (⇤ a)s by letting

(⇤ a)(⇥
�) ,

⇥
⌅

⇤
⇥

� if �,⇥ ⇧= a
⌅

⌅ if � = ⇥ = a
⌥ otherwise

(⇤ a)s ,

⇥
⌅

⇤

�1\(⇤ a)(⇥1
�2)\...\(⇤ a)(⇥n�1

�n)\⇥n if �1,⇥n ⇧= a � ⌃i ⌅ [1,n�1].(⇤ a)(⇥i
�i+1) ⇧=⌥�

(�1\(⇤ a)(⇥1
�2)\...\(⇤ a)(⇥n�1

�n)\⇥n) is a link chain
⌥ otherwise

Example 6. Let s = ⌅\a
a\b

⇥\⇥ and s⇤ = ⇥\⇥⇥\⇥b\⌅ . Then, (⇤ a)s = ⌅\⌅
⌅\b

⇥\⇥ and (⇤ a)(s • s⇤) =
⌅\⌅

⌅\b
b\⌅ = ((⇤ a)s) • s⇤.

3.2 Process Syntax

The processes of the core network algebra (CNA for short) are those generated by the following gram-
mar:

P,Q,R ::= 0 | X | �.P | P+Q | P|Q | (⇤ a)P | recX .P | {P}
where � is a solid link (i.e., �= �\⇥ with �,⇥ ⇧= ⇥).

Roughly, processes are build over a CCS-like syntax (with nil process 0, prefix �.P, sum P+Q,
parallel P|Q, restriction (⇤ a)P and recursion recX .P for X a process variable), but where the underlying
synchronization algebra is based on link chains. This is made evident by the operational semantics,
presented next.

The only original operator is {P} that filters out incomplete communications (i.e., it allows P to
evolve only via solid link chains).
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Restriction. Certain actions of the link chain can be made invisible by restricting the channel where
they take place. Of course, restriction is possible only if no broken link is created by this process, i.e.
only matched communication pairs can be restricted. Formally, for s = p1...pn, with pi = �i\⇥i for any
i ⌅ [1,n], we define we define the restriction operation (⇤ a)s by letting
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3.2 Process Syntax

The processes of the core network algebra (CNA for short) are those generated by the following gram-
mar:

P,Q,R ::= 0 | X | �.P | P+Q | P|Q | (⇤ a)P | recX .P | {P}
where � is a solid link (i.e., �= �\⇥ with �,⇥ ⇧= ⇥).

Roughly, processes are build over a CCS-like syntax (with nil process 0, prefix �.P, sum P+Q,
parallel P|Q, restriction (⇤ a)P and recursion recX .P for X a process variable), but where the underlying
synchronization algebra is based on link chains. This is made evident by the operational semantics,
presented next.

The only original operator is {P} that filters out incomplete communications (i.e., it allows P to
evolve only via solid link chains).
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link chain. Formally, for s = p1...pn and s⇤ = p⇤1...p
⇤
n, with pi = �i\⇥i and p⇤i = � ⇤

i \⇥ ⇤
i

for any i ⌅ [1,n], we
define s � s⇤ by letting:

� � ⇥ �

⇥
⌅

⇤

� if ⇥ = ⇥
⇥ if � = ⇥
⌥ otherwise

�\⇥ � � ⇤\⇥ ⇤ �
� (� �� ⇤)\(⇥ �⇥ ⇤) if � � � ⇤,⇥ � ⇥ ⇤ ⇧=⌥

⌥ otherwise
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�

(p1 � p⇤1)...(pn � p⇤n) if ⌃i ⌅ [1,n].pi � p⇤i ⇧=⌥� (p1 � p⇤1)...(pn � p⇤n) is a link chain
⌥ otherwise

Roughly, the merge is defined element-wise on the actions of a link chain, by ensuring that whenever
two actions are merged, (at least) one of them is ⇥ and that the result of the merge is still a link chain.
Example 5. Let s1 = ⌅\a
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⇥\⇥, and s3 = ⇥\⇥⇥\⇥b\⌅ . Then s = s1 � s2 = ⌅\a

a\b
⇥\⇥ and

s � s3 = ⌅\a
a\b

b\⌅ .
Lemma 1. The merge of link chains is a commutative and associative operation.
Lemma 2. If s is solid, then for any s⇤ we have s � s⇤ =⌥.

Restriction. Certain actions of the link chain can be made invisible by restricting the channel where
they take place. Of course, restriction is possible only if no broken link is created by this process, i.e.
only matched communication pairs can be restricted. Formally, for s = p1...pn, with pi = �i\⇥i for any
i ⌅ [1,n], we define we define the restriction operation (⇤ a)s by letting

(⇤ a)(�
⇥ ) �

⇥
⌅

⇤

�
⇥ if �,⇥ ⇧= a

⌅
⌅ if � = ⇥ = a
⌥ otherwise

(⇤ a)s �

⇥
⌅

⇤

�1\(⇤ a)(⇥1
�2)\...\(⇤ a)(⇥n�1

�n)\⇥n if �1,⇥n ⇧= a � ⌃i ⌅ [1,n�1].(⇤ a)(⇥i
�i+1) ⇧=⌥�

(�1\(⇤ a)(⇥1
�2)\...\(⇤ a)(⇥n�1

�n)\⇥n) is a link chain
⌥ otherwise

Example 6. Let s = ⌅\a
a\b

⇥\⇥ and s⇤ = ⇥\⇥⇥\⇥b\⌅ . Then, (⇤ a)s = ⌅\⌅
⌅\b

⇥\⇥ and (⇤ a)(s � s⇤)= ⌅\⌅
⌅\b

b\⌅ =
((⇤ a)s) � s⇤.

3.2 Process Syntax

The processes of the core network algebra (CNA for short) are those generated by the following gram-
mar:

P,Q,R ::= 0 | X | ⇤.P | P+Q | P|Q | (⇤ a)P | recX .P | {P}
where ⇤ is a solid link (i.e., ⇤ = �\⇥ with �,⇥ ⇧= ⇥).

Roughly, processes are build over a CCS-like syntax (with nil process 0, prefix ⇤.P, sum P + Q,
parallel P|Q, restriction (⇤ a)P and recursion recX .P for X a process variable), but where the underlying
synchronization algebra is based on link chains. This is made evident by the operational semantics,
presented next.

The only original operator is {P} that filters out incomplete communications (i.e., it allows P to
evolve only via solid link chains).
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3.2 Process Syntax

The processes of the core network algebra (CNA for short) are those generated by the following gram-
mar:

P,Q,R ::= 0 | X | ⇤.P | P+Q | P|Q | (⇤ a)P | recX .P | {P}
where ⇤ is a solid link (i.e., ⇤ = �\⇥ with �,⇥ ⇧= ⇥).

Roughly, processes are build over a CCS-like syntax (with nil process 0, prefix ⇤.P, sum P + Q,
parallel P|Q, restriction (⇤ a)P and recursion recX .P for X a process variable), but where the underlying
synchronization algebra is based on link chains. This is made evident by the operational semantics,
presented next.

The only original operator is {P} that filters out incomplete communications (i.e., it allows P to
evolve only via solid link chains).
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only matched communication pairs can be restricted. Formally, for s = p1...pn, with pi = �i\⇥i for any
i ⌅ [1,n], we define we define the restriction operation (⇤ a)s by letting

(⇤ a)(⇥
�) �

⇥
⌅

⇤
⇥

� if �,⇥ ⇧= a
⌅

⌅ if � = ⇥ = a
⌥ otherwise

(⇤ a)s �

⇥
⌅

⇤

�1\(⇤ a)(⇥1
�2)\...\(⇤ a)(⇥n�1

�n)\⇥n if �1,⇥n ⇧= a � ⌃i ⌅ [1,n�1].(⇤ a)(⇥i
�i+1) ⇧=⌥�

(�1\(⇤ a)(⇥1
�2)\...\(⇤ a)(⇥n�1

�n)\⇥n) is a link chain
⌥ otherwise

Example 6. Let s= ⌅\a
a\b

⇥\⇥ and s⇤= ⇥\⇥⇥\⇥b\⌅ . Then, (⇤ a)s= ⌅\⌅
⌅\b

⇥\⇥ and (⇤ a)(s � s⇤)= ⌅\⌅
⌅\b

b\⌅ =
((⇤ a)s) � s⇤.

3.2 Process Syntax

The processes of the core network algebra (CNA for short) are those generated by the following gram-
mar:

P,Q,R ::= 0 | X | ⇤.P | P+Q | P|Q | (⇤ a)P | recX .P | {P}
where ⇤ is a solid link (i.e., ⇤= �\⇥ with �,⇥ ⇧= ⇥).

Roughly, processes are build over a CCS-like syntax (with nil process 0, prefix ⇤.P, sum P+Q,
parallel P|Q, restriction (⇤ a)P and recursion recX .P for X a process variable), but where the underlying
synchronization algebra is based on link chains. This is made evident by the operational semantics,
presented next.

The only original operator is {P} that filters out incomplete communications (i.e., it allows P to
evolve only via solid link chains).

(�a)(↵1\�1
↵2\�2 ... ↵n\�n ) ,

otherwise



Examples: restriction
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�
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�
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b
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� b
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�
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= ?
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⇤ ⇧ s (Act)
⇤.P s�⇤ P

P s�⇤ P⌅
(Lsum)

P+Q s�⇤ P⌅
P s�⇤ P⌅

(Res)

(� a)P
(� a)s���⇤ (� a)P⌅

P[X ⌥⇤ recX .P] s�⇤ P⌅
(Rec)

recX .P s�⇤ P⌅

P s�⇤ P⌅
(Lpar)

P|Q s�⇤ P⌅|Q
P s�⇤ P⌅ Q s⌅�⇤ Q⌅

(Com)

P|Q s �s⌅��⇤ P⌅|Q⌅

P s�⇤ P⌅ s is solid (Sol)
{P} s�⇤ {P⌅ }

Figure 2: SOS semantics of the core network algebra (rules (Rsum) and (Rpar) omitted)

3.3 Process Semantics

The idea is that communication can be routed across several processes by combining the links they make
available to form a link chain. Since the length of the link chain is not fixed a priori, a multi-party
synchronization is considered.

We take as observations only link chains whose extremities are silent, because they are not to be
composed further. For compositionality reasons, we allow observations to contain unknown links ⇥\⇥, to
be provided by the context.

The operational semantics is defined in Fig. 2. The obvious rules (Rsum) and (Rpar), symmetric of
(Lsum) and (Lpar) are omitted for brevity. In rules (Res) and (Com) we leave implicit the side conditions
(� a)s ⌃= � and s � s⌅ ⌃= �, respectively (as otherwise the label of the transition in the conclusion would
be undefined).

In the following, we use the shorthand ao � ⇥\a and ai � a\⇥ .
Example 7. Consider the processes R = {P}, P = ao.P1|(� b)Q and Q = bi.P2|a\b.0. The process ao.P1
wants to output on a; the process bi.P2 wants to input from b; the process a\b.0 provides a one-shot link
from a to b. Together, they can synchronize as follows:

(Act)

ao.P1
⇥\a

⇥\⇥⇥\⇥�����⇤ P1

(Act)

bi.P2
⇥\⇥⇥\⇥b\⇥�����⇤ P2

(Act)
a\b.0

⇥\⇥a\b
⇥\⇥�����⇤ 0

(Com)

Q
⇥\⇥a\b

b\⇥�����⇤ P2|0
(Res)

(� b)Q
⇥\⇥a\⇥

⇥\⇥�����⇤ (� b)(P2|0)
(Com)

P
⇥\a

a\⇥
⇥\⇥�����⇤ P1|(� b)(P2|0)

(Sol)

{P}
⇥\a

a\⇥
⇥\⇥�����⇤ {P1|(� b)(P2|0)}

3.4 Examples

In this section we show a few examples of “routing” processes to show the flexibility of CNA in their
formalization.

We have already seen a one-shot, one-hop forwarder from a to b, that can be written as a\b.0. Its
persistent version is just written Pa

b � recX . a\b.X .
A persistent non-deterministic forwarder, from a to b or c can be written, e.g., as Pa

b,c � recX .(a\b.X+
a\c.X). Similarly, Pd,e

a � recX .(d\a.X + e\a.X) is a persistent non-deterministic forwarder, from d or e
to a. By combining the two processes as (� a)(Pd,e

a |Pa
b,c), then we obtain a persistent forwarder from

either d or e to either b or c. As an advantage, note that the combinatorial explosion is taken care of by
the communication rules, and it does not affect the “size” of the processes.
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3.3 Process Semantics

The idea is that communication can be routed across several processes by combining the links they make
available to form a link chain. Since the length of the link chain is not fixed a priori, a multi-party
synchronization is considered.

We take as observations only link chains whose extremities are silent, because they are not to be
composed further. For compositionality reasons, we allow observations to contain unknown links ⇥\⇥, to
be provided by the context.

The operational semantics is defined in Fig. 2. The obvious rules (Rsum) and (Rpar), symmetric of
(Lsum) and (Lpar) are omitted for brevity. In rules (Res) and (Com) we leave implicit the side conditions
(� a)s ⌃= � and s � s⌅ ⌃= �, respectively (as otherwise the label of the transition in the conclusion would
be undefined).

In the following, we use the shorthand ao � ⇥\a and ai � a\⇥ .
Example 7. Consider the processes R = {P}, P = ao.P1|(� b)Q and Q = bi.P2|a\b.0. The process ao.P1
wants to output on a; the process bi.P2 wants to input from b; the process a\b.0 provides a one-shot link
from a to b. Together, they can synchronize as follows:

(Act)

ao.P1
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⇥\⇥⇥\⇥�����⇤ P1

(Act)

bi.P2
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(Act)
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(Com)

Q
⇥\⇥a\b

b\⇥�����⇤ P2|0
(Res)

(� b)Q
⇥\⇥a\⇥
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a\⇥
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3.4 Examples

In this section we show a few examples of “routing” processes to show the flexibility of CNA in their
formalization.

We have already seen a one-shot, one-hop forwarder from a to b, that can be written as a\b.0. Its
persistent version is just written Pa

b � recX . a\b.X .
A persistent non-deterministic forwarder, from a to b or c can be written, e.g., as Pa

b,c � recX .(a\b.X+
a\c.X). Similarly, Pd,e

a � recX .(d\a.X + e\a.X) is a persistent non-deterministic forwarder, from d or e
to a. By combining the two processes as (� a)(Pd,e

a |Pa
b,c), then we obtain a persistent forwarder from

either d or e to either b or c. As an advantage, note that the combinatorial explosion is taken care of by
the communication rules, and it does not affect the “size” of the processes.

(simple)(solid)
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3.3 Process Semantics

The idea is that communication can be routed across several processes by combining the links they make
available to form a link chain. Since the length of the link chain is not fixed a priori, a multi-party
synchronization is considered.

We take as observations only link chains whose extremities are silent, because they are not to be
composed further. For compositionality reasons, we allow observations to contain unknown links ⇥\⇥, to
be provided by the context.

The operational semantics is defined in Fig. 2. The obvious rules (Rsum) and (Rpar), symmetric of
(Lsum) and (Lpar) are omitted for brevity. In rules (Res) and (Com) we leave implicit the side conditions
(� a)s ⌃=� and s • s⌅ ⌃=�, respectively (as otherwise the label of the transition in the conclusion would
be undefined).

In the following, we use the shorthand ao , ⇥\a and ai , a\⇥ .
Example 7. Consider the processes R = {P}, P = ao.P1|(� b)Q and Q = bi.P2|a\b.0. The process ao.P1
wants to output on a; the process bi.P2 wants to input from b; the process a\b.0 provides a one-shot link
from a to b. Together, they can synchronize as follows:

(Act)

ao.P1
⇥\a

⇥\⇥⇥\⇥�����⇤ P1

(Act)

bi.P2
⇥\⇥⇥\⇥b\⇥�����⇤ P2

(Act)
a\b.0

⇥\⇥a\b
⇥\⇥�����⇤ 0

(Com)

Q
⇥\⇥a\b

b\⇥�����⇤ P2|0
(Res)

(� b)Q
⇥\⇥a\⇥

⇥\⇥�����⇤ (� b)(P2|0)
(Com)

P
⇥\a

a\⇥
⇥\⇥�����⇤ P1|(� b)(P2|0)

(Sol)

{P}
⇥\a

a\⇥
⇥\⇥�����⇤ {P1|(� b)(P2|0)}

3.4 Examples

In this section we show a few examples of “routing” processes to show the flexibility of CNA in their
formalization.

We have already seen a one-shot, one-hop forwarder from a to b, that can be written as a\b.0. Its
persistent version is just written Pa

b , recX . a\b.X .
A persistent non-deterministic forwarder, from a to b or c can be written, e.g., as Pa

b,c , recX .(a\b.X+
a\c.X). Similarly, Pd,e

a , recX .(d\a.X + e\a.X) is a persistent non-deterministic forwarder, from d or e
to a. By combining the two processes as (� a)(Pd,e

a |Pa
b,c), then we obtain a persistent forwarder from

either d or e to either b or c. As an advantage, note that the combinatorial explosion is taken care of by
the communication rules, and it does not affect the “size” of the processes.

(look as ordinary CCS rules)



Example
(�a)(�\a.P | a\b.Q | b\� .R)

�\a.P
�\�a\��\�

P
a\b.Q

�\a�\�b\� Q

b\� .R
�\��\b�\� R

�\aa\�b\�
P | Q�\a.P | a\b.Q

�\a.P | a\b.Q | b\� .R
�\aa\bb\� P | Q | R
�\��\bb\� (�a)(P | Q | R)(�a)(�\a.P | a\b.Q | b\� .R)



Fact
The process algebra of linked interactions

is a straightforward extension of CCS
It includes CCS as a sub-calculus

Finer (bisimilarity over the) LTS wrt CCS:
three kinds of meaningful observables

�\a �\�a\b�\� b\�
�\a.b\� + b\� .�\a ⇥� �\a | b\�
�\a.�\b + �\b.�\a � �\a | �\b
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Roadmap

• Problem statement: intro and motivation

• A new kind of interaction

• Handling message content

• Encoding mobile ambients

• Conclusion and future work



Name mobility

Ready to handle mobile ambients interactions

but we need to update locations of processes
when ambient moves

some form of name mobility is needed



Handling name mobility
Aim: introduce polyadic communication 
and reuse/rely on pi as much as possible

One possibility: 
each link receive some arguments and 

send some names... too complex

Another possibility: 
each link in the chain carry the same list of arguments... 

but with different (send/receive) capabilities

a(ex)\
bey.P

a\bex.P



Separation of concerns

This way we separate 
the interaction mechanism

from
the name passing mechanism

(We formalize them separately and
then fit them together)

6 LTS for Mobile Ambients

An alternating forwarder can be written as Aa
b,c � recX .(a\b.a\c.X). By combining the processes

(⇤ a)(Pd,e
a |Aa

b,c), then we obtain a persistent forwarder from either d or e to a and b in alternation (with a
first).

A progressive de-referencing forwarder, that each time is used increments the number of hops nec-
essary to reach the destination, can be written as follows: Let Ha

b = a\b.recX .(⇤ h)(a\h.X |h\b.0).

4 Enhancing the core Network Algebra with Name Passing

We can now enhance the algebra to deal with name passing. There are several alternatives to add ar-
guments to the communication mechanism based on links. Here we follow the simpler idea, where the
same message traverses the whole link chain. Other alternatives are discussed in the conclusion.

We extend the syntax by extending link prefixes with a tuple of arguments:

P,Q,R ::= · · · | ⇤t.P

In the tuple t = �⌅w , we can have values and variables. They are distinguished by annotating variables
with underline. For a tuple t, we let vals(t) and vars(t) denote the set of values and the set of variables
of t, respectively. We say that a tuple t is ground if vars(t) = /0.

*** WE NEED TO WORK UP TO ALPHA-CONVERSION OF RESTRICTED NAMES (IN-
STEAD, I THINK IT IS NOT NECESSARY TO WORK UP TO ALPHA-CONVERSION OF BOUND
VARIABLES) ***

*** WE NEED TO DEFINE P⌅ (vedi sotto) ***
We shall allow labels of the form sg such that s is a chain link and g is a ground tuple. Moreover, if

s is solid, then g must be the empty tuple, i.e., it is not possible to observe the arguments of a completed
communication. We let s abbreviate s� .
Example 8. The process a\b�n,y .P denotes a communication over the link a\b with two parameters:
the first parameter must match the name n, while the second parameter is not constrained and will be
assigned to y in P. This allows, e.g., a form of multi-way communication, where all peers involved in
the chain link can express arguments to be matched and provide actual arguments to replace formal
ones. Consider, e.g., the process (⇤ a)(⇧\a�id,n,x .P|a\⇧�id,y,m .Q). Then, in one step, it can reduce to
(⇤ a)(P[x ⇧⇤ m]|Q[y ⇧⇤ n]), via the communication ⇧\⇧

⇧\⇧�id,n,m . Morever, since the chain link ⇧\⇧
⇧\⇧

is solid (i.e., it cannot be extended further), we can remove the tuple from the observed label.
*** DOPO RIPRENDIAMO QUESTO EX E MOSTRIAMO COME FUNZIONA L’ANNOTAZIONE

DEGLI ARGOMENTI ***

We denote by ⌅ = [x1 ⇧⇤ v1, ...,xn ⇧⇤ vn] the substitution that replaces each xi with vi, and let
vars(⌅) = {x1, ...,xn }. For a tuple t = �w1, ...,wn and a substitution ⌅ = [x1 ⇧⇤ v1, ...,xn ⇧⇤ vn] such
that vars(t) ⇥ vars(⌅) we define t⌅ element-wise as:

v⌅ � v
x⌅ � vi if x = xi for some i ⌅ [1,n]

t⌅ � �w1⌅ , ...,wn⌅ 

Given a link ⇤= �\⇥ , and a substitution ⌅ = [x1 ⇧⇤ v1, ...,xn ⇧⇤ vn], we define ⇤⌅ as:

⇤⌅ � �⌅\⇥⌅

`

t



No need to reinvent the 
wheel

We can easily borrow from pi 
the name handling machinery

(and free it from dyadic interaction legacy)

P | a(x).Q

P | ax.Q

P | (�x)ax.Q

(waits input from P) P

0 | Q[b/x]

P 0 | Q

(�y)P 0 | Q[y/x]

(outputs to P)

(extrudes to P)



Tuple
t = h ewi w ::= x value (output)

x variable (input)

variables are instantiated by values 

values are used for matching arguments

hn,m, xi

hy,m, ki

Assigns n to y
Matches m with m

Assigns k to x
=



Extrusion
an argument in a tuple can be extruded if it is

not already annotated

extruded arguments are overlined 
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***** QUINDI I NOMI DEI LINK in � e I VALORI IN t FANNO PARTE DELLO STESSO IN-
SIEME, COME NEL pi-calcolo, NOMI COME LINK ****

The application of ⇤ on processes is defined as:

0⇤ , 0
X⇤ , X

(�t.P)⇤ , (�⇤)(t⇤).(P⇤)

(P+Q)⇤ , P⇤ +Q⇤
(P|Q)⇤ , P⇤ |Q⇤

((� a)P)⇤ , (�a)P⇤ , if a /⇤ vars(⇤)⌥ vals(⇤)

(recX .P)⇤ , recX .(P⇤)

{P}⇤ , {P⇤ }

We say that g is a ground instance of t and write g�⇤ t if vars(⇤) = vars(t) and g = t⇤ .
Like in the ⇥-calculus, names in the tuple can be extruded during the communication. In the labels

of transitions, we need to annotate positions in the tuple to distinguish between arguments that are taken
in input (i.e., they are guessed instances), or that are extruded. We underline the former and overline the
latter.

A name can be extruded when it is not already annotated; after the extrusion, it will be overlined.
Formally, given a ground (annotated) tuple g, we define (� a)g as follows:

(� a)w ,

8
<

:

⌃ if w = a w = a
a if w = a
w otherwise

(� a)⌦w1, ...,wn↵ ,
⇢
⌦(� a)w1, ...,(� a)wn↵ if ⇧i ⇤ [1,n].(� a)wi ⌅=⌃
⌃ otherwise

(� a)(st) ,
⇢

((� a)s)((� a)t) if (� a)s ⌅=⌃� (� a)t ⌅=⌃
⌃ otherwise

We write a ⇤ g if the name a appears in the tuple g (with or without annotation).
Two annotated tuples can be merged when they list exactly the same values in the same order, and if

the values in matching positions are annotated in some compatible way. Formally:

w • w⇥ ,

8
>><

>>:

w if (w = w⇥ = v) (w = w⇥ = v)
v if (w = v�w⇥ = v) (w = v�w⇥ = v)
v if (w = v�w⇥ = v) (w = v�w⇥ = v)
⌃ otherwise

⌦w1, ...,wn↵ • ⌦w⇥1, ...,w⇥n↵ ,
⇢
⌦w1 • w⇥1, ...,wn • w⇥n↵ if ⇧i ⇤ [1,n].wi • w⇥i ⌅=⌃
⌃ otherwise

sg • s⇥g⇥ ,
⇢

(s • s⇥)(g • g⇥) if s • s⇥ ⌅=⌃�g • g⇥ ⌅=⌃
⌃ otherwise

The enhanced SOS rules are in Figure 3. They may look complicated, but a closer look show that
they resemble the ordinary early semantics of ⇥-calculus. The main difference is that we are dealing with



Merge
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⌃ otherwise

⌦w1, ...,wn↵ • ⌦w⇥1, ...,w⇥n↵ ,
⇢
⌦w1 • w⇥1, ...,wn • w⇥n↵ if ⇧i ⇤ [1,n].wi • w⇥i ⌅=⌃
⌃ otherwise

st • s⇥t ⇥ ,
⇢

(s • s⇥)(t • t ⇥) if s • s⇥ ⌅=⌃� t • t ⇥ ⌅=⌃
⌃ otherwise

The enhanced SOS rules are in Figure 3. They may look complicated, but a closer look show that
they resemble the ordinary early semantics of ⇥-calculus. The main difference is that we are dealing with
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Figure 3: SOS semantics of the core network algebra (rules (Rsum) and (Rpar) omitted)

a many-party form of communication, hence the “close” rule must be applied when the communication
has been completed. Let us briefly comment the rules.

Rule (Act) allows the prefix �t to be part of a communication sg. The additional condition g ⇥⌅
t reflects the early style of the semantics: variables appearing in t must be replaced in g by actual
arguments.

Rules (Lsum), (Rsum) and (Rec) are straightforward.

In rules (Res) and (Open) we leave implicit the side condition (� a)sg ⌃=�. Rule (Res) is applicable
whenever a ⌃⇧ g, in which case (� a)g = g ⌃=� and therefore (� a)(sg) = ((� a)s)g. Rule (Open) models
the extrusion of a. Note that, by the premises (� a)sg ⌃= � and a ⇧ g, we have that the only possibility
for a to appear in g is without annotations (otherwise (� a)g = �). Then, by definition of (� a)g, all
occurrences of a within g are overlined in (� a)g (to denote the name extrusion).

Rule (Com) checks that the two labels sg and s⌅g⌅ can be merged (sg • s⌅g⌅ ⌃=�), that extruded names
of one process do not clash with free names of the other process (like in ordinary ⇥-calculus) and finally
that the communication is not completed yet (s • s⌅ not solid).

Rule (Close) checks differs from (Com) by checking that the communication has been fully com-
pleted and cannot be extended further (s • s⌅ is solid), in which case we must put back the restriction of
all names extruded in the communication ((� ex(g • g⌅))). Morever, the observed label is just s • s⌅, as
explained before.

Rules (Lpar) and (Rpar) need just to check that extruded names of one process do not clash with free
names of the other process (like in ordinary ⇥-calculus).

Rule (Sol) is only concerned with solid link chains and therefore it leaves implicit that g = ⌦↵.
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a many-party form of communication, hence the “close” rule must be applied when the communication
has been completed. Let us briefly comment the rules.

Rule (Act) allows the prefix �t to be part of a communication sg. The additional condition g ⇥⌅
t reflects the early style of the semantics: variables appearing in t must be replaced in g by actual
arguments.

Rules (Lsum), (Rsum) and (Rec) are straightforward.

In rules (Res) and (Open) we leave implicit the side condition (� a)sg ⌃=�. Rule (Res) is applicable
whenever a ⌃⇧ g, in which case (� a)g = g ⌃=� and therefore (� a)(sg) = ((� a)s)g. Rule (Open) models
the extrusion of a. Note that, by the premises (� a)sg ⌃= � and a ⇧ g, we have that the only possibility
for a to appear in g is without annotations (otherwise (� a)g = �). Then, by definition of (� a)g, all
occurrences of a within g are overlined in (� a)g (to denote the name extrusion).

Rule (Com) checks that the two labels sg and s⌅g⌅ can be merged (sg • s⌅g⌅ ⌃=�), that extruded names
of one process do not clash with free names of the other process (like in ordinary ⇥-calculus) and finally
that the communication is not completed yet (s • s⌅ not solid).

Rule (Close) checks differs from (Com) by checking that the communication has been fully com-
pleted and cannot be extended further (s • s⌅ is solid), in which case we must put back the restriction of
all names extruded in the communication ((� ex(g • g⌅))). Morever, the observed label is just s • s⌅, as
explained before.

Rules (Lpar) and (Rpar) need just to check that extruded names of one process do not clash with free
names of the other process (like in ordinary ⇥-calculus).

Rule (Sol) is only concerned with solid link chains and therefore it leaves implicit that g = ⌦↵.

(a appears in g)
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a many-party form of communication, hence the “close” rule must be applied when the communication
has been completed. Let us briefly comment the rules.

Rule (Act) allows the prefix �t to be part of a communication sg. The additional condition g ⇥⌅
t reflects the early style of the semantics: variables appearing in t must be replaced in g by actual
arguments.

Rules (Lsum), (Rsum) and (Rec) are straightforward.

In rules (Res) and (Open) we leave implicit the side condition (� a)sg ⌃=�. Rule (Res) is applicable
whenever a ⌃⇧ g, in which case (� a)g = g ⌃=� and therefore (� a)(sg) = ((� a)s)g. Rule (Open) models
the extrusion of a. Note that, by the premises (� a)sg ⌃= � and a ⇧ g, we have that the only possibility
for a to appear in g is without annotations (otherwise (� a)g = �). Then, by definition of (� a)g, all
occurrences of a within g are overlined in (� a)g (to denote the name extrusion).

Rule (Com) checks that the two labels sg and s⌅g⌅ can be merged (sg • s⌅g⌅ ⌃=�), that extruded names
of one process do not clash with free names of the other process (like in ordinary ⇥-calculus) and finally
that the communication is not completed yet (s • s⌅ not solid).

Rule (Close) checks differs from (Com) by checking that the communication has been fully com-
pleted and cannot be extended further (s • s⌅ is solid), in which case we must put back the restriction of
all names extruded in the communication ((� ex(g • g⌅))). Morever, the observed label is just s • s⌅, as
explained before.

Rules (Lpar) and (Rpar) need just to check that extruded names of one process do not clash with free
names of the other process (like in ordinary ⇥-calculus).

Rule (Sol) is only concerned with solid link chains and therefore it leaves implicit that g = ⌦↵.

(extruded names of g)
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has been completed. Let us briefly comment the rules.

Rule (Act) allows the prefix �t to be part of a communication sg. The additional condition g ⇥⌅
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Rules (Lsum), (Rsum) and (Rec) are straightforward.

In rules (Res) and (Open) we leave implicit the side condition (� a)sg ⌃=�. Rule (Res) is applicable
whenever a ⌃⇧ g, in which case (� a)g = g ⌃=� and therefore (� a)(sg) = ((� a)s)g. Rule (Open) models
the extrusion of a. Note that, by the premises (� a)sg ⌃= � and a ⇧ g, we have that the only possibility
for a to appear in g is without annotations (otherwise (� a)g = �). Then, by definition of (� a)g, all
occurrences of a within g are overlined in (� a)g (to denote the name extrusion).

Rule (Com) checks that the two labels sg and s⌅g⌅ can be merged (sg • s⌅g⌅ ⌃=�), that extruded names
of one process do not clash with free names of the other process (like in ordinary ⇥-calculus) and finally
that the communication is not completed yet (s • s⌅ not solid).

Rule (Close) checks differs from (Com) by checking that the communication has been fully com-
pleted and cannot be extended further (s • s⌅ is solid), in which case we must put back the restriction of
all names extruded in the communication ((� ex(g • g⌅))). Morever, the observed label is just s • s⌅, as
explained before.

Rules (Lpar) and (Rpar) need just to check that extruded names of one process do not clash with free
names of the other process (like in ordinary ⇥-calculus).

Rule (Sol) is only concerned with solid link chains and therefore it leaves implicit that g = ⌦↵.
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of one process do not clash with free names of the other process (like in ordinary ⇥-calculus) and finally
that the communication is not completed yet (s • s⌅ not solid).

Rule (Close) checks differs from (Com) by checking that the communication has been fully com-
pleted and cannot be extended further (s • s⌅ is solid), in which case we must put back the restriction of
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explained before.
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a many-party form of communication, hence the “close” rule must be applied when the communication
has been completed. Let us briefly comment the rules.

Rule (Act) allows the prefix �t to be part of a communication sg. The additional condition g ⇥⌅
t reflects the early style of the semantics: variables appearing in t must be replaced in g by actual
arguments.

Rules (Lsum), (Rsum) and (Rec) are straightforward.

In rules (Res) and (Open) we leave implicit the side condition (� a)sg ⌃=�. Rule (Res) is applicable
whenever a ⌃⇧ g, in which case (� a)g = g ⌃=� and therefore (� a)(sg) = ((� a)s)g. Rule (Open) models
the extrusion of a. Note that, by the premises (� a)sg ⌃= � and a ⇧ g, we have that the only possibility
for a to appear in g is without annotations (otherwise (� a)g = �). Then, by definition of (� a)g, all
occurrences of a within g are overlined in (� a)g (to denote the name extrusion).

Rule (Com) checks that the two labels sg and s⌅g⌅ can be merged (sg • s⌅g⌅ ⌃=�), that extruded names
of one process do not clash with free names of the other process (like in ordinary ⇥-calculus) and finally
that the communication is not completed yet (s • s⌅ not solid).

Rule (Close) checks differs from (Com) by checking that the communication has been fully com-
pleted and cannot be extended further (s • s⌅ is solid), in which case we must put back the restriction of
all names extruded in the communication ((� ex(g • g⌅))). Morever, the observed label is just s • s⌅, as
explained before.

Rules (Lpar) and (Rpar) need just to check that extruded names of one process do not clash with free
names of the other process (like in ordinary ⇥-calculus).

Rule (Sol) is only concerned with solid link chains and therefore it leaves implicit that g = ⌦↵.



Fact

The process calculus of linked interactions with name 
mobility is a straightforward extension of pi

It includes pi as a sub-calculus

Finer (bisimilarity over the) LTS wrt pi
(but it is a congruence)
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5 Encoding Mobile Ambients

In this section we show how to encode mobile ambients in the (enhanced) CNA. We pick MA as an
interesting case because its simple reduction rules rely on a multi-party interaction.

Rule (In) requires a three-party interaction (at least), namely it involves: 1) the process inm.P with
the capability to enter the ambient m; 2) the ambient n[ · ] (where inm.P is enclosed) that should move;
3) the ambient m[ · ] to be entered. The rule can be successfully applied only when the three entities
are available. Any encoding based on standard binary interactions must deal with atomicity issues in
the completion of the move, with conflicting, concurrent operations on the same ambient and with the
possibility of retract / roll-back in case only two peers out of three are available.

Similarly, rule (Out) requires a three-party interaction (at least), namely it involves: 1) the process
outm.P with the capability to leave the ambient m; 2) the ambient n[ · ] (where outm.P is enclosed) that
should move; 3) the ambient m[ · ] (where n[outm.P ] is enclosed) to be exited.

The rule (Open) seems to require a two-party interaction only, but as a matter of fact it is more
complex than the other two rules, as it introduces the need of multi-party interactions with an unbounded
number of peers. This is because when the ambient n[ · ] dissolves its content Q must be relocated, which
may consist of an unbounded number of parallel processes: they all participate to the interaction! The
simpler solution we adopt here is to replace n[ · ] with some sort of blind forwarder that leaves Q unaware
of the deletion of n[ · ]. However, the presence of forwarders complicates the interactions needed by rules
(In) and (Out), because the three parties can now be connected via chains of forwarders of arbitrary
length.

Roughly, the idea is to define an encoding assigning to any MA process P an (enhanced) CNA process
JPKã (the role of names ã will be made clear later) such that:

• for any reduction P � P⇥ there is a silent step JPKã � JP⇥ Kã;

• and vice versa, for any silent step JPKã � Q there is an MA process P⇥ such that Q = JP⇥ Kã and
P � P⇥.

Unfortunately, a direct encoding has to deal with the presence of forwarders, so that in general:

• for any reduction P � P⇥ we can find a silent step JPKã � Q but Q can differ from JP⇥ Kã because
of the presence of forwarders;

• and vice versa, for any silent step JPKã � Q we can find an MA process P⇥ such that P � P⇥ but,
again, Q can differ from JP⇥ Kã because of the presence of forwarders.

One possible turnaround is to show that the correspondence holds up to some suitable abstract equiv-
alence (e.g., barbed congruence over MA and CNA processes) that can add / remove forwarders.

Instead, we provide a more elegant solution that introduces forwarders in the syntax of MA, with
no effect whatsoever on the semantics and expressiveness, and that allows us to recover the stronger
correspondence result sketched above, with exact matching between the reductions of MA and the silent
steps of CNA.

5.1 Ambients with Brackets

We just extend the syntax of MA with the possibility to enclose a process P within a pair of parentheses:

P ::= · · · | LPM

P

ea
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with the aim to make the presence of parentheses inessential w.r.t. the behaviour of the process.
To this aim, we introduce the additional structural congruence axioms:

�(� n)P⇥ � (� n)�P⇥ P � Q ⇤ �P⇥ � �Q⇥

Finally, we need to adjust the basic reduction rules to deal with the presence of an arbitrary number
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5 Encoding Mobile Ambients

In this section we show how to encode mobile ambients in the (enhanced) CNA. We pick MA as an
interesting case because its simple reduction rules rely on a multi-party interaction.

Rule (In) requires a three-party interaction (at least), namely it involves: 1) the process inm.P with
the capability to enter the ambient m; 2) the ambient n[ · ] (where inm.P is enclosed) that should move;
3) the ambient m[ · ] to be entered. The rule can be successfully applied only when the three entities
are available. Any encoding based on standard binary interactions must deal with atomicity issues in
the completion of the move, with conflicting, concurrent operations on the same ambient and with the
possibility of retract / roll-back in case only two peers out of three are available.

Similarly, rule (Out) requires a three-party interaction (at least), namely it involves: 1) the process
outm.P with the capability to leave the ambient m; 2) the ambient n[ · ] (where outm.P is enclosed) that
should move; 3) the ambient m[ · ] (where n[outm.P ] is enclosed) to be exited.

The rule (Open) seems to require a two-party interaction only, but as a matter of fact it is more
complex than the other two rules, as it introduces the need of multi-party interactions with an unbounded
number of peers. This is because when the ambient n[ · ] dissolves its content Q must be relocated, which
may consist of an unbounded number of parallel processes: they all participate to the interaction! The
simpler solution we adopt here is to replace n[ · ] with some sort of blind forwarder that leaves Q unaware
of the deletion of n[ · ]. However, the presence of forwarders complicates the interactions needed by rules
(In) and (Out), because the three parties can now be connected via chains of forwarders of arbitrary
length.

Roughly, the idea is to define an encoding assigning to any MA process P an (enhanced) CNA process
JPKã (the role of names ã will be made clear later) such that:

• for any reduction P � P⇥ there is a silent step JPKã � JP⇥ Kã;

• and vice versa, for any silent step JPKã � Q there is an MA process P⇥ such that Q = JP⇥ Kã and
P � P⇥.

Unfortunately, a direct encoding has to deal with the presence of forwarders, so that in general:

• for any reduction P � P⇥ we can find a silent step JPKã � Q but Q can differ from JP⇥ Kã because
of the presence of forwarders;

• and vice versa, for any silent step JPKã � Q we can find an MA process P⇥ such that P � P⇥ but,
again, Q can differ from JP⇥ Kã because of the presence of forwarders.

One possible turnaround is to show that the correspondence holds up to some suitable abstract equiv-
alence (e.g., barbed congruence over MA and CNA processes) that can add / remove forwarders.

Instead, we provide a more elegant solution that introduces forwarders in the syntax of MA, with
no effect whatsoever on the semantics and expressiveness, and that allows us to recover the stronger
correspondence result sketched above, with exact matching between the reductions of MA and the silent
steps of CNA.

5.1 Ambients with Brackets

We just extend the syntax of MA with the possibility to enclose a process P within a pair of parentheses:

P ::= · · · | LPM
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outm.P with the capability to leave the ambient m; 2) the ambient n[ · ] (where outm.P is enclosed) that
should move; 3) the ambient m[ · ] (where n[outm.P ] is enclosed) to be exited.

The rule (Open) seems to require a two-party interaction only, but as a matter of fact it is more
complex than the other two rules, as it introduces the need of multi-party interactions with an unbounded
number of peers. This is because when the ambient n[ · ] dissolves its content Q must be relocated, which
may consist of an unbounded number of parallel processes: they all participate to the interaction! The
simpler solution we adopt here is to replace n[ · ] with some sort of blind forwarder that leaves Q unaware
of the deletion of n[ · ]. However, the presence of forwarders complicates the interactions needed by rules
(In) and (Out), because the three parties can now be connected via chains of forwarders of arbitrary
length.

Roughly, the idea is to define an encoding assigning to any MA process P an (enhanced) CNA process
JPKã (the role of names ã will be made clear later) such that:

• for any reduction P � P⇥ there is a silent step JPKã � JP⇥ Kã;

• and vice versa, for any silent step JPKã � Q there is an MA process P⇥ such that Q = JP⇥ Kã and
P � P⇥.

Unfortunately, a direct encoding has to deal with the presence of forwarders, so that in general:

• for any reduction P � P⇥ we can find a silent step JPKã � Q but Q can differ from JP⇥ Kã because
of the presence of forwarders;

• and vice versa, for any silent step JPKã � Q we can find an MA process P⇥ such that P � P⇥ but,
again, Q can differ from JP⇥ Kã because of the presence of forwarders.

One possible turnaround is to show that the correspondence holds up to some suitable abstract equiv-
alence (e.g., barbed congruence over MA and CNA processes) that can add / remove forwarders.

Instead, we provide a more elegant solution that introduces forwarders in the syntax of MA, with
no effect whatsoever on the semantics and expressiveness, and that allows us to recover the stronger
correspondence result sketched above, with exact matching between the reductions of MA and the silent
steps of CNA.

5.1 Ambients with Brackets

We just extend the syntax of MA with the possibility to enclose a process P within a pair of parentheses:

P ::= · · · | LPM

9P 0

implies

implies

But both statements fail because of forwarders!
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JPKã (the role of names ã will be made clear later) such that:

• for any reduction P � P⇥ there is a silent step JPKã � JP⇥ Kã;

• and vice versa, for any silent step JPKã � Q there is an MA process P⇥ such that Q = JP⇥ Kã and
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Unfortunately, a direct encoding has to deal with the presence of forwarders, so that in general:

• for any reduction P � P⇥ we can find a silent step JPKã � Q but Q can differ from JP⇥ Kã because
of the presence of forwarders;

• and vice versa, for any silent step JPKã � Q we can find an MA process P⇥ such that P � P⇥ but,
again, Q can differ from JP⇥ Kã because of the presence of forwarders.

One possible turnaround is to show that the correspondence holds up to some suitable abstract equiv-
alence (e.g., barbed congruence over MA and CNA processes) that can add / remove forwarders.

Instead, we provide a more elegant solution that introduces forwarders in the syntax of MA, with
no effect whatsoever on the semantics and expressiveness, and that allows us to recover the stronger
correspondence result sketched above, with exact matching between the reductions of MA and the silent
steps of CNA.

5.1 Ambients with Brackets

We just extend the syntax of MA with the possibility to enclose a process P within a pair of parentheses:

P ::= · · · | LPM

Extend ambients with parentheses

They are introduced when an ambient is dissolved
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J0Kã , 0
Jn[P ]Kã , (� b̃)(Amb(n, b̃, ã)|JPKb̃ )

JLPMKã , (� b̃)(Fwd(b̃, ã)|JPKb̃ )

J inm.PKã , ⇤\ain⇥m, x̃⇤.JPKã

Joutm.PKã , ⇤\aout ⇥m, x̃⇤.JPKã

Jopenn.PKã , ⇤\aopn⇥n⇤.JPKã

JP|QKã , JPKã|JQKã

J(� n)PKã , (� n)JPKã

J !PKã , recX .(JPKã|X)

Figure 4: Structural encoding of MA in CNA

Name passing is used to match the name of the ambient for which the capability is applicable with
the name of the ambient where we would like to apply it. Moreover, in the case of enter / exit capabilities,
name passing is necessary to inform the ambient that moves about the location where it is relocated.

We assume implicitly that all restricted names introduced by the encoding are (globally) “fresh”.
The encoding is defined by straightforward structural induction in Fig. 4, where the processes Amb(n, ã, f̃ )

and Fwd(ã, f̃ ) are defined below and represent, respectively, an ambient n located at f̃ and providing its
content with location ã, and a forwarder between the dissolved location ã and the “father” location f̃ :

Amb(n, ã, f̃ ) , ain\ f[in]⇥m, z̃⇤.Amb(n, ã, z̃)+ f[in]\⇤⇥n, ã⇤.Amb(n, ã, f̃ )+
aout\ f[out]⇥m, z̃⇤.Amb(n, ã, z̃)+ a[out]\⇤⇥n, f̃ ⇤.Amb(n, ã, f̃ )+
fopn\⇤⇥n⇤.Fwd(ã, f̃ )

Fwd(ã, f̃ ) , ain\ fin⇥n, x̃⇤.Fwd(ã, f̃ )+ a[in]\ f[in]⇥n, x̃⇤.Fwd(ã, f̃ )+ f[in]\a[in]⇥n, x̃⇤.Fwd(ã, f̃ )+
aout\ fout ⇥n, x̃⇤.Fwd(ã, f̃ )+ a[out]\ f[out]⇥n, x̃⇤.Fwd(ã, f̃ )+
aopn\ fopn⇥n⇤.Fwd(ã, f̃ )+ fopn\aopn⇥n⇤.Fwd(ã, f̃ )

Example 9. Let P � m[s[ inn.R ] | T ] | openm.Q | n[G ] be a MA process, and let

P⇥ � JPK ˜top � (� ã)(Amb(m, ã, ˜top)|T⇥)|
(� b̃)(Amb(s, b̃, ã)|⇤\bin⇥n, x̃⇤.R⇥)|
⇤\topopn⇥m⇤.Q⇥ |
(� c̃)(Amb(n, c̃, ˜top)|G⇥)

where R⇥ � JRKb̃ T⇥ � JT Kã Q⇥ � JQK ˜top G⇥ � JGKc̃

be its econding. Here we will show two transitions of P process and the corresponding two transitions
executed by P⇥ .
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where R⇥ � JRKb̃ T⇥ � JT Kã Q⇥ � JQK ˜top G⇥ � JGKc̃

be its econding. Here we will show two transitions of P process and the corresponding two transitions
executed by P⇥ .

C. Bodei, L. Brodo, and R. Bruni 11

J0Kã , 0
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