Open Multiparty Interactions in the link-calculus

Roberto Bruni (Pisa)

joint work with Chiara Bodei (Pisa) Linda Brodo (Sassari)

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

Let's begin

(but feel free to interrupt)

Setting

Modelling concurrent communicating systems

Process calculi approach

(some basic knowledge of CCS and pi assumed, some details omitted)

Interaction

An interaction is an action by which (communicating) processes can influence each other

Milner's CCS interaction co-action prefix (output?) $a.P \mid \overline{a.Q}$ action prefix (input?) $a \circ \overline{a} = \tau$ silent action $P \mid Q$

Milner's pi interaction

Any better abstraction?

Internet Biology Social networks Autonomic systems

I/O is the basic form of interaction but "one size won't fit all"

(it is possibly misleading to think otherwise: not all interactions are mutual/reciprocal)

Would you...?

...model piano playing using dyadic interaction

Open multiparty interactions are like playing piano (either bad or good, it does not matter)

Vision

Interaction is like a puzzle:

it requires different pieces to fit together

Bold claim #1

Mutual (I/O-like) interaction is like a kid's puzzle

Multiparty interaction

An interaction is multiparty when it involves two or more processes

Open interaction

An interaction is open when the number of involved processes is not fixed

Our aim

Extend the theory of dyadic interactions as little as possible as well as possible to deal with open multiparty interaction

Motivating example

How to encode Cardelli&Gordon's mobile ambients (in ordinary process calculi)?

CCS/CSP: immutable connectivity

> pi: channel mobility

HOpi: flat process mobility mobile ambients: mobility of nested processes (barrier crossing)

Process algebra ops nil 0 μP action prefix P+Q sum $P \mid Q$ parallel $(\nu a)P$ restriction !P replication

X process variable rec X.P recursive process

 $P[\phi]$ renaming

Named, mobile, active, hierarchical ambients

An ambient is a place where computation happens An ambient defines some sort of boundary

An ambient has a name An ambient has a collection of local processes An ambient has a collection of sub-ambients

Ambients are subject to capabilities: Ambients can move in/out of other ambients Ambients can dissolve

(Pure) Ambient calculus

Ambient calculus: semantics

Structural congruence

 $P \equiv P$ $Q \equiv P \Rightarrow P \equiv Q$ $P \mid \mathbf{0} \equiv P \qquad P \mid Q \equiv Q \mid P$ $(\mathbf{v}n)\mathbf{0} \equiv \mathbf{0}$ $(\mathbf{v}n)(\mathbf{v}m)P \equiv (\mathbf{v}m)(\mathbf{v}n)P$ $(vn)(P \mid Q) \equiv P \mid (vn)Q, \text{ if } n \notin fn(P) \qquad P \equiv Q \Rightarrow (vn)P \equiv (vn)Q$ $!P \equiv P \mid !P$ $(\nu n)(m[P]) \equiv m[(\nu n)P], \text{ if } n \neq m$

 $P \equiv Q, Q \equiv R \Rightarrow P \equiv R$ $(P \mid Q) \mid R \equiv P \mid (Q \mid R)$ $P \equiv Q \Rightarrow P | R \equiv Q | R$ $P \equiv Q \Rightarrow n[P] \equiv n[Q]$

Ambient calculus: semantics

Structural congruence

 $P \equiv P$ $Q \equiv P \Rightarrow P \equiv Q$ $P \equiv Q, Q \equiv R \Rightarrow P \equiv R$ $P \mid \mathbf{0} \equiv P$ $P \mid Q \equiv Q \mid P$ $(P \mid Q) \mid R \equiv P \mid (Q \mid R)$ $(vn)\mathbf{0} \equiv \mathbf{0}$ $(vn)(vm)P \equiv (vm)(vn)P$ $P \equiv Q \Rightarrow P \mid R \equiv Q \mid R$ $(vn)(P \mid Q) \equiv P \mid (vn)Q$, if $n \notin fn(P)$ $P \equiv Q \Rightarrow (vn)P \equiv (vn)Q$ $!P \equiv P \mid !P$ $(vn)(m[P]) \equiv m[(vn)P]$, if $n \neq m$ $P \equiv Q \Rightarrow n[P] \equiv n[Q]$

Reduction semantics

$$n[\operatorname{in} m.P | Q] | m[R] \to m[n[P | Q] | R] \xrightarrow{(\operatorname{In})} m[n[\operatorname{out} m.P | Q] | R] \to n[P | Q] | m[R] \xrightarrow{(\operatorname{Out})} \overline{(\operatorname{pen} n.P | n[Q] \to P | Q} \xrightarrow{(\operatorname{Open})} \frac{P \to Q}{(vn)P \to (vn)Q} \xrightarrow{(\operatorname{Res})} \frac{P \to Q}{n[P] \to n[Q]} \xrightarrow{(\operatorname{Amb})} \frac{P \to Q}{n[P] \to n[Q]} \xrightarrow{(\operatorname{Amb})} \frac{P \to Q}{P | R \to Q | R} \xrightarrow{(\operatorname{Par})} \frac{P' \equiv P \quad P \to Q}{P' \to Q'} \xrightarrow{Q \equiv Q'} \xrightarrow{(\operatorname{Cong})} \frac{P' \equiv P \quad P \to Q}{P' \to Q'} \xrightarrow{(\operatorname{Cong})} \frac{P' = P \quad P \to Q}{P' \to Q'} \xrightarrow{(\operatorname{Cong})} \frac{P' = P \quad P \to Q}{P' \to Q'} \xrightarrow{(\operatorname{Cong})} \frac{P' = P \quad P \to Q}{P' \to Q'} \xrightarrow{(\operatorname{Cong})} \frac{P' = P \quad P \to Q}{P' \to Q'} \xrightarrow{(\operatorname{Cong})} \frac{P' = P \quad P \to Q}{P' \to Q'} \xrightarrow{(\operatorname{Cong})} \frac{P \to Q}{P \to Q} \xrightarrow{(\operatorname{Cong})} \xrightarrow{(\operatorname{Cong})} \frac{P \to Q}{P \to Q} \xrightarrow{(\operatorname{Cong})} \frac{P \to Q}{P \to Q} \xrightarrow{(\operatorname{Cong})} \xrightarrow{(\operatorname{Cong})} \frac{P \to Q}{P \to Q} \xrightarrow{(\operatorname{Cong})} \xrightarrow{(\operatorname{Cong})} \xrightarrow{(\operatorname{Cong})} \frac{P \to Q}{P \to Q} \xrightarrow{(\operatorname{Cong})} \xrightarrow{(\operatorname{Cong})} \frac{P \to Q}{P \to Q} \xrightarrow{(\operatorname{Cong})} \xrightarrow{(\operatorname{$$

(ln)

$n[\operatorname{in} m.P|Q]|m[R] \to m[n[P|Q]|R]$

(Out)

$m[n[\operatorname{out} m.P|Q]|R] \to n[P|Q]|m[R]$

(Open)

$\operatorname{open} n.P | n[Q] \to P | Q$

open n. P

A challenge for the audience

Why is it difficult to encode ambients into pi? (How would you proceed?)

Personal guess: it is just because ambient-like interaction is inherently non-dyadic!

Ambients as graphs

three-party interaction (at least)

many processes (Q) change location at once

ok, now it is a two-party interaction But (In) and (Out) become open! they must involve as many fwd-ers as needed

Some consequences

Proposed encoding are either quite involved or centralized (unnecessary bottle-necks)

LTS semantics for ambients are ad-hoc (to say the least) and based on HO labels

Some references

- Fabio Gadducci, Giacoma Valentina Monreale: A decentralised graphical implementation of mobile ambients. J. Log. Algebr. Program. 80(2): 113-136 (2011)
- Linda Brodo: On the Expressiveness of the pi-Calculus and the Mobile Ambients. AMAST 2010: 44-59
- Gabriel Ciobanu, Vladimir A. Zakharov: Encoding Mobile Ambients into the pi -Calculus. Ershov Memorial Conference 2006: 148-165
- Linda Brodo, Pierpaolo Degano, Corrado Priami: Reflecting Mobile Ambients into the p-Calculus. Global Computing 2003: 25-56
- Cédric Fournet, Jean-Jacques Lévy, Alan Schmitt: An Asynchronous, Distributed Implementation of Mobile Ambients. IFIP TCS 2000: 348-364

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

(Recall our aim)

Extend the theory of dyadic interactions as little as possible as well as possible to deal with open multiparty interaction

and to encode mobile ambients

Guidelines

Keep the syntax simple Do not move the complexity to SOS rules

All we need is just a proper synchronization algebra

Linked interaction

We regard an interaction as a chain of links (still a kid's puzzle after all)

Process algebra ops nil $\mathbf{0}$ μP action prefix P+Q sum We take as action $P \mid Q$ parallel the offering of a link $(\nu a)P$ restriction !P replication

X process variable rec X.P recursive process

 $P[\phi]$ renaming
Notation

a interaction over a

au silent interaction

* any interaction (only in labels)

Link

Valid:

$$\alpha = \beta = * \text{ or } \alpha, \beta \neq *$$

Solid (otherwise)

Examples: CCS-like

Examples: three party

Examples: CSP

Link chain

$${}^{\alpha_1} \backslash_{\beta_1} {}^{\alpha_2} \backslash_{\beta_2} \cdots {}^{\alpha_n} \backslash_{\beta_n}$$

such that:

 $\beta_i, \alpha_{i+1} \notin \{\tau, *\} \text{ implies } \beta_i = \alpha_{i+1}$ $\beta_i = \tau \text{ iff } \alpha_{i+1} = \tau$ $\forall i.\alpha_i, \beta_i \in \{\tau, *\} \text{ implies } \forall i.\alpha_i = \beta_i = \tau$

Link chain: terminology

$$\alpha_1 \setminus_{\beta_1} \alpha_2 \setminus_{\beta_2} \cdots \alpha_n \setminus_{\beta_n}$$

Solid: if all its links are so

Simple: if it contains exactly one solid link

 $\substack{\ell \in s \\ \text{is simple and } \ell \text{ is the only solid link in } s}$

Examples: non solid

Virtual links $^* \setminus_*$ can be read as missing pieces of the puzzle

Examples: simple

Counter-examples

Merge

(All the ops we show are strict)

$$\alpha \bullet \beta \triangleq \begin{cases} \alpha & \text{if } \beta = * \\ \beta & \text{if } \alpha = * \\ \bot & \text{otherwise} \end{cases}$$

 ${}^{\alpha} \backslash_{\beta} \bullet {}^{\alpha'} \backslash_{\beta'} \triangleq \begin{cases} (\alpha \bullet \alpha') \backslash (\beta \bullet \beta') & \text{if } \alpha \bullet \alpha', \beta \bullet \beta' \neq \bot \\ \bot & \text{otherwise} \end{cases}$

The definition extends to chains element-wise (the result is undefined if the outcome is not valid)

Examples: merge

Restriction

$$(\nu a)(\beta^{\alpha}) \triangleq \begin{cases} \beta^{\alpha} & \text{if } \alpha, \beta \neq a \\ \tau^{\tau} & \text{if } \alpha = \beta = a \\ \bot & \text{otherwise} \end{cases}$$

$$\begin{aligned} (\nu a)(^{\alpha_1} \backslash_{\beta_1} \ ^{\alpha_2} \backslash_{\beta_2} \ \dots \ ^{\alpha_n} \backslash_{\beta_n}) &\triangleq \\ \begin{cases} \alpha_1 \backslash (\nu a)(_{\beta_1} \alpha_2) \backslash \dots \backslash (\nu a)(_{\beta_{n-1}} \alpha_n) \backslash_{\beta_n} & \text{if } \alpha_1, \beta_n \neq a \\ \\ \bot & \text{otherwise} \end{aligned}$$

Examples: restriction

$$(\nu a) \begin{array}{|c|c|c|c|} \hline \tau & * & b \\ \hline a & * & \tau \end{array} = \bot$$

(Relevant) SOS rules

(solid) (simple) $\frac{\ell \in s}{\ell \cdot P \xrightarrow{s} P}$ (Act)

$$\frac{P \xrightarrow{s} P'}{(va)P \xrightarrow{(va)s} (va)P'}$$
(Res)

$$\frac{P \xrightarrow{s} P'}{P|Q \xrightarrow{s} P'|Q} \text{ (Lpar) } \frac{P \xrightarrow{s} P' \quad Q \xrightarrow{s'} Q'}{P|Q \xrightarrow{s \cdot s'} P'|Q'} \text{ (Com)}$$

(look as ordinary CCS rules)

$$\begin{array}{c} \textbf{Example} \\ (\nu a)(^{\tau}\backslash_{a}.P \mid {}^{a}\backslash_{b}.Q \mid {}^{b}\backslash_{\tau}.R) \\ \\ \hline \tau \backslash_{a}.P \xrightarrow{\tau \backslash {}^{a}\backslash {}^{*}\backslash {}^{*}} P \quad {}^{a}\backslash_{b}.Q \xrightarrow{* \backslash {}^{a}\backslash {}^{*}\backslash {}^{*}} Q \\ \hline \tau \backslash_{a}.P \mid {}^{a}\backslash_{b}.Q \xrightarrow{\tau \backslash {}^{a}\backslash {}^{*}\backslash {}^{*}} P \mid Q \quad {}^{b}\backslash_{\tau}.R \xrightarrow{* \backslash {}^{*}\backslash {}^{b}\backslash {}^{*}} R \\ \hline \hline \tau \backslash_{a}.P \mid {}^{a}\backslash_{b}.Q \mid {}^{b}\backslash_{\tau}.R \xrightarrow{\tau \backslash {}^{a}\backslash {}^{b}\backslash {}^{*}} P \mid Q \mid R \\ \hline \hline \tau \backslash_{a}.P \mid {}^{a}\backslash_{b}.Q \mid {}^{b}\backslash_{\tau}.R \xrightarrow{\tau \backslash {}^{a}\backslash {}^{b}\backslash {}^{*}} P \mid Q \mid R \\ \hline \hline (\nu a)(^{\tau}\backslash_{a}.P \mid {}^{a}\backslash_{b}.Q \mid {}^{b}\backslash_{\tau}.R) \xrightarrow{\tau \backslash {}^{\tau}\backslash {}^{b}\backslash {}^{*}} (\nu a)(P \mid Q \mid R) \end{array}$$

Fact

The process algebra of linked interactions is a straightforward extension of CCS It includes CCS as a sub-calculus

Finer (bisimilarity over the) LTS wrt CCS: three kinds of meaningful observables

 $\tau a \qquad \tau a a b a a b a a b a a b a a b a a b a b a a b a$

Some references

 U. Montanari and M. Sammartino.
 Network conscious pi-calculus. Technical Report TR-12-01, Computer Science
 Department, University of Pisa, 2012.

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

Name mobility

Ready to handle mobile ambients interactions

but we need to update locations of processes when ambient moves

some form of name mobility is needed

Handling name mobility

Aim: introduce polyadic communication and reuse/rely on pi as much as possible

One possibility: $a(\widetilde{x}) \setminus b\widetilde{y} \cdot P$ each link receive some arguments and send some names... too complex

Another possibility: ${}^{a} \setminus {}_{b} \widetilde{x} \cdot P$ each link in the chain carry the same list of arguments... but with different (send/receive) capabilities

Separation of concerns

$$P,Q,R ::= \cdots \mid \ell t . P$$

This way we separate the interaction mechanism ℓ from the name passing mechanism t

(We formalize them separately and then fit them together)

No need to reinvent the wheel

We can easily borrow from pi the name handling machinery (and free it from dyadic interaction legacy)

 $P \mid a(x).Q$ (waits input from P) $P' \mid Q[b/x]$

 $P \mid \overline{a}x.Q \qquad \text{(outputs to P)} \qquad P' \mid Q$

 $P \mid (\nu x)\overline{a}x.Q$ (extrudes to P) $(\nu y)P' \mid Q[y/x]$

$\begin{aligned} & \mathsf{Tuple} \\ t = \langle \widetilde{w} \rangle & w ::= x & \text{value (output)} \\ & \underline{x} & \text{variable (input)} \end{aligned}$

variables are instantiated by values

values are used for matching arguments

$$\begin{array}{l} \langle n, m, \underline{x} \rangle \\ \downarrow &=& \uparrow \\ \langle y, m, k \rangle \end{array}$$

Assigns n to y Matches m with m Assigns k to x

Extrusion

an argument in a tuple can be extruded if it is not already annotated

extruded arguments are overlined

$$(\mathbf{v}a)w \triangleq \begin{cases} \perp & \text{if } w = \overline{a} \lor w = \underline{a} \\ \overline{a} & \text{if } w = a \\ w & \text{otherwise} \end{cases}$$
$$(\mathbf{v}a)\langle w_1, \dots, w_n \rangle \triangleq \begin{cases} \langle (\mathbf{v}a)w_1, \dots, (\mathbf{v}a)w_n \rangle & \text{if } \forall i \in [1,n].(\mathbf{v}a)w_i \neq \bot \\ \bot & \text{otherwise} \end{cases}$$
$$(\mathbf{v}a)(st) \triangleq \begin{cases} ((\mathbf{v}a)s)((\mathbf{v}a)t) & \text{if } (\mathbf{v}a)s \neq \bot \land (\mathbf{v}a)t \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

Merge

$$w \bullet w' \triangleq \begin{cases} w & \text{if } (w = w' = v) \lor (w = w' = \underline{v}) \\ v & \text{if } (w = v \land w' = \underline{v}) \lor (w = \underline{v} \land w' = v) \\ \overline{v} & \text{if } (w = \overline{v} \land w' = \underline{v}) \lor (w = \underline{v} \land w' = \overline{v}) \\ \bot & \text{otherwise} \end{cases}$$
$$\langle w_1, \dots, w_n \rangle \bullet \langle w'_1, \dots, w'_n \rangle \triangleq \begin{cases} \langle w_1 \bullet w'_1, \dots, w_n \bullet w'_n \rangle & \text{if } \forall i \in [1, n]. w_i \bullet w'_i \neq \bot \\ \bot & \text{otherwise} \end{cases}$$
$$st \bullet s't' \triangleq \begin{cases} (s \bullet s')(t \bullet t') & \text{if } s \bullet s' \neq \bot \land t \bullet t' \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

(Relevant) SOS rules

$$\frac{\ell \in s \qquad g = t\rho}{\ell t . P \xrightarrow{sg} P\rho}$$
(Act)

$$\frac{P \xrightarrow{sg} P' \quad a \notin g}{(va)P \xrightarrow{(va)sg} (va)P'} (\text{Res}) \qquad \frac{P \xrightarrow{sg} P' \quad a \in g}{(va)P \xrightarrow{(va)sg} P'} (\text{Open})$$

(analogous to (early) pi rules)

$$(Relevant) SOS rules$$

$$(extruded names of g)$$

$$(extruded names of g)$$

$$(extruded names of g)$$

$$(Lpar)$$

$$P|Q \xrightarrow{sg} P' \qquad Q \xrightarrow{s'g'} Q' \qquad s \bullet s' \text{ is not solid}$$

$$(Com)$$

$$P|Q \xrightarrow{sg \bullet s'g'} P'|Q'$$

$$\frac{P \xrightarrow{sg} P'}{Q \xrightarrow{s'g'} Q'} \frac{vars(g \bullet g') = \emptyset}{vars(g \bullet g') = \emptyset} \xrightarrow{ex(g) \cap fn(Q) = ex(g') \cap fn(P) = \emptyset}{s \bullet s' \text{ is solid}} (\text{Close})$$

$$P|Q \xrightarrow{s \bullet s'} (v ex(g \bullet g'))(P'|Q')$$
(analogous to (early) pi rules)

Fact

The process calculus of linked interactions with name mobility is a straightforward extension of pi It includes pi as a sub-calculus

> Finer (bisimilarity over the) LTS wrt pi (but it is a congruence)

Some references

- Roberto Bruni, Ivan Lanese: Parametric synchronizations in mobile nominal calculi. Theor. Comput. Sci. 402(2-3): 102-119 (2008)
- Marco Carbone, Sergio Maffeis: On the Expressive Power of Polyadic Synchronisation in pi-calculus. Nord. J. Comput. 10(2): 70-98 (2003)

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

Encoding mobile ambients

 $\|P\|_{\tilde{a}}$ requests from in capability a_{in} requests from an ambient $a_{[in]}$ with in capability inside requests from out capability a_{out} requests from an ambient $a_{[out]}$ with out capability inside a_{opn} requests from open capability

Desiderata

 $P \to P'$ implies $\llbracket P \rrbracket_{\tilde{a}} \to \llbracket P' \rrbracket_{\tilde{a}}$ $\llbracket P \rrbracket_{\tilde{a}} \to Q$ implies $\exists P' \quad Q = \llbracket P' \rrbracket_{\tilde{a}} \quad P \to P'$

But both statements fail because of forwarders!

Roundabout

Extend ambients with parentheses

$$P \quad ::= \quad \cdots \quad | \quad (|P|)$$

They are introduced when an ambient is dissolved

The encoding

$$\begin{bmatrix} \mathbf{0} \end{bmatrix}_{\tilde{a}} \triangleq \mathbf{0}$$

$$\begin{bmatrix} n[P] \end{bmatrix}_{\tilde{a}} \triangleq (\mathbf{v}\tilde{b})(Amb(n,\tilde{b},\tilde{a})|\llbracket P \rrbracket_{\tilde{b}})$$

$$\begin{bmatrix} (P) \end{bmatrix}_{\tilde{a}} \triangleq (\mathbf{v}\tilde{b})(Fwd(\tilde{b},\tilde{a})|\llbracket P \rrbracket_{\tilde{b}})$$

$$\begin{bmatrix} in m.P \rrbracket_{\tilde{a}} \triangleq {}^{\tau} \backslash_{a_{in}} \langle m, \underline{\tilde{x}} \rangle . \llbracket P \rrbracket_{\tilde{a}} \qquad \llbracket P |Q \rrbracket_{\tilde{a}} \triangleq \llbracket P \rrbracket_{\tilde{a}} |\llbracket Q \rrbracket_{\tilde{a}}$$

$$\begin{bmatrix} out m.P \rrbracket_{\tilde{a}} \triangleq {}^{\tau} \backslash_{a_{out}} \langle m, \underline{\tilde{x}} \rangle . \llbracket P \rrbracket_{\tilde{a}} \qquad \llbracket (\mathbf{v}n)P \rrbracket_{\tilde{a}} \triangleq (\mathbf{v}n) \llbracket P \rrbracket_{\tilde{a}}$$

$$open n.P \rrbracket_{\tilde{a}} \triangleq {}^{\tau} \backslash_{a_{opn}} \langle n \rangle . \llbracket P \rrbracket_{\tilde{a}} \qquad \llbracket !P \rrbracket_{\tilde{a}} \triangleq \operatorname{rec} X. (\llbracket P \rrbracket_{\tilde{a}} |X)$$

$$\begin{split} Amb(n,\tilde{a},\tilde{f}) &\triangleq \begin{array}{l} a_{in} \setminus_{f_{[in]}} \langle \underline{m}, \underline{\tilde{z}} \rangle Amb(n, \tilde{a}, \overline{z}) + f_{[in]} \setminus_{\tau} \langle n, \overline{a} \rangle Amb(n, \overline{a}, \overline{f}) + \\ & a_{out} \setminus_{f_{[out]}} \langle \underline{m}, \underline{\tilde{z}} \rangle Amb(n, \overline{a}, \overline{z}) + a_{[out]} \setminus_{\tau} \langle n, \overline{f} \rangle Amb(n, \overline{a}, \overline{f}) + \\ & f_{opn} \setminus_{\tau} \langle n \rangle Fwd(\overline{a}, \overline{f}) \\ Fwd(\overline{a}, \overline{f}) &\triangleq \begin{array}{l} a_{in} \setminus_{f_{in}} \langle \underline{n}, \underline{\tilde{x}} \rangle Fwd(\overline{a}, \overline{f}) + a_{[in]} \setminus_{f_{[in]}} \langle \underline{n}, \underline{\tilde{x}} \rangle Fwd(\overline{a}, \overline{f}) + f_{[in]} \setminus_{a_{[in]}} \langle \underline{n}, \underline{\tilde{x}} \rangle Fwd(\overline{a}, \overline{f}) + \\ & a_{out} \setminus_{f_{out}} \langle \underline{n}, \underline{\tilde{x}} \rangle Fwd(\overline{a}, \overline{f}) + a_{[out]} \setminus_{f_{[out]}} \langle \underline{n}, \underline{\tilde{x}} \rangle Fwd(\overline{a}, \overline{f}) + \\ & a_{opn} \setminus_{f_{opn}} \langle \underline{n} \rangle Fwd(\overline{a}, \overline{f}) + f_{opn} \setminus_{a_{opn}} \langle \underline{n} \rangle Fwd(\overline{a}, \overline{f}) \end{split}$$

Some references

- Julian Rathke, Pawel Sobocinski: Deriving structural labelled transitions for mobile ambients. Inf. Comput. 208(10): 1221-1242 (2010)
- Filippo Bonchi, Fabio Gadducci, Giacoma Valentina Monreale: Reactive Systems, Barbed Semantics, and the Mobile Ambients. FOSSACS 2009: 272-287
- Massimo Merro, Francesco Zappa Nardelli: Behavioral theory for mobile ambients. J.ACM 52(6): 961-1023 (2005)
- Gian Luigi Ferrari, Ugo Montanari, Emilio Tuosto: A LTS Semantics of Ambients via Graph Synchronization with Mobility. ICTCS 2001: 1-16

Roadmap

- Problem statement: intro and motivation
- A new kind of interaction
- Handling message content
- Encoding mobile ambients
- Conclusion and future work

Conclusion

Envisage interaction like a puzzle

A theory of linked interactions

Derive standard first-order LTS semantics (and suitable bisimilarities congruences)

Ongoing work

Relation with existing abstract semantics for mobile ambients (conjecture: slightly finer equivalence, but non ad hoc)

Future work

Expressiveness (with/without name mobility)

Extensions: $({}^{\tau} \backslash_a^* \backslash_b^b \backslash_*^c \backslash_{\tau}).P$ non-simple prefixes

graph-driven interaction

The End

THANKS FOR THE ATTENTION